New and little known species of Pseudolividae (Gastropoda) from the Tertiary of Chile ## Sven N. Nielsen Geologisch-Paläontologisches Institut und Museum Universität Hamburg Bundesstrasse 55, 20146 Hamburg GERMANY nielsen@geowiss.uni-hamburg.de #### Daniel Frassinetti Museo Nacional de Historia Natural Casilla 787 Santiago CHILE dfrassinetti@mnhn.cl #### ABSTRACT Two new species of Pseudolividae, Macron vermeiji and Triumphis maitenlahuensis, are described and figured from Miocene deposits of the Navidad Formation, central Chile. Both are among the oldest known representatives of their respective genera. Juvenile specimens of the Miocene species Testallium cepa (Sowerby, 1846) and the holotype of the Eocene Sulcobuccinum retusum (Philippi, 1887) are figured for comparison. One of the three syntypes of Monoceros opimum Hupé, 1854, and the holotype of Monoceros labiale Hupé, 1854, both previously considered synonyms of Testallium cepa, are figured for the first time and synonymy is confirmed. # INTRODUCTION The earliest descriptions of Tertiary gastropods of Chile were by d'Orbigny (1842), Sowerby (1846), Hupé (1854), and Philippi (1887). Subsequently, a major revision of Pliocene/Pleistocene faunas was conducted by Herm (1969). New collections of Miocene gastropods from Chile made by the senior author and Klaus Bandel (Hamburg, Germany) and collections housed in the Museo Nacional de Historia Natural (Santiago, Chile) made by the junior author and the late Vladimir Covacevich (Santiago, Chile), include a number of undescribed species, among them the two new pseudolivid species described herein. The family Pseudolividae was recently revised by Vermeij (1998) who presented a reevaluation of the entire family based on shell characters of Recent and fossil species and his classification is followed herein. Vermeij (1998) attributed the family-name Pseudolividae in his abstract to Cossmann (1901) and in the systematic section to Fischer (1884). However, it was de Gregorio (1880, p. 104) who first introduced this name and the family is consequently attributed to him. Although there is a continuous pseudolivid record in South America since the Late Cretaceous, few species have been described (Vermeij, 1997, 1998). Only three Chilean Tertiary species are known (Vermeij and De-Vries, 1997): the Eocene Sulcobuccinum retusum (Phi- lippi, 1887), the Miocene *Testallium cepa* (Sowerby, 1846), which also occurs in Peru, and the Pliocene *Testallium escalonia* Vermeij and DeVries, 1997. Sulcobuccinum retusum comes from strata near the village of Algarrobo (Figure 1), north of San Antonio, Chile. From an intertidal platform of that village, Eocene and Late Cretaceous sediments are known. Because no material other than the holotype is known, and the genus Sulcobuccinum d'Orbigny, 1850, is known from the Campanian onward (Vermeij, 1998), the age of the species remains unclear. However, Vermeij (1998) regarded this species as of early Eocene age. Gastridium retusum Philippi, 1887, was reassigned to Buccinorbis Conrad, 1865, by Vermeij and DeVries (1997), a genus later considered to be a synonym of Sulcobuccinum (Vermeij, 1998). However, the holotype of G. retusum (Figures 13-14, SGO.PI.765, height 43 mm) has never been figured since the original drawing was published by Philippi (1887). The remaining species reported here come from the Navidad Formation (Figure 1). ### ABBREVIATIONS MNHN-LG: Museum national d'Histoire naturelle, Laboratoire de Géologie, Paris, France. SGO.PI: Museo Nacional de Historia Natural, Departamento de Paleontología de Invertebrados, Santiago, Chile. SMF: Senckenberg Museum, Frankfurt, Germany. # SYSTEMATIC PALEONTOLOGY Family Pseudolividae de Gregorio, 1880 Genus *Macron* H. and A. Adams, 1853 **Type Species:** Pseudoliva kellettii A. Adams, 1855 (= Buccinum aethiops Reeve, 1847); Recent, West Mexico. Macron vermeiji new species (Figures 7, 8, 10, 11) **Description:** Shell medium-sized, ovate, spire low, consisting of five to six whorls. Height-to-width ratio Figure 1. Type localities of *Macron vermeiji* and *Triumphis maitenlahuensis* and other localities mentioned in the text. 1.25. Whorls separated by narrow suture. Last whorl large, comprising 83% of total shell height, rounded, constricted basally above siphonal fasciole. Pseudolivid groove situated low on last whorl, terminating in distinct labral tooth. Spiral sculpture consisting of three cords below pseudolivid groove and very faint threads above, axial sculpture absent except for faint growth lines. Protoconch unknown. Outer lip planar. Anterior notch present, reflected as groove inside last quarter of last whorl. Interior of outer lip lirate. Columellar callus cutting deeply into former whorl, having two weak folds at entrance to siphonal canal. Columella with two weak folds at entrance to siphonal canal. Siphonal fasciole prominent, bounded above by keel. Anterior notch deep, no umbilicus. **Type Material:** Holotype SGO.PI.5988 (height 24 mm, width 19 mm), paratype SGO.PI.3714 (height 22.5 mm; together with nine juvenile specimens of *Testallium cepa*). Early late Miocene (Tortonian), Navidad Formation **Type Locality (Figure 1):** About one kilometer north of Matanzas, Chile. Early late Miocene (Tortonian), Navidad Formation (see Frassinetti and Covacevich (1993) for more details on the locality). Occurrence: Specimens of the new species of *Macron* were collected on an intertidal platform about 1 km north of the village of Matanzas as described by Frassinetti and Covacevich (1993) and from a fossil-bearing lens about 2 m higher in the section. That lens, however, was severely eroded the following year. It has been dated as Tortonian (upper Miocene) based on Foraminifera (Finger et al., 2003). The accompanying gastropod fauna indicates mainly a shallow-water environment but some possible deep-water species are present (Nielsen and DeVries, 2002), such as *Xenophora paulinae* Nielsen and DeVries, 2002. A deep-water environment is also indicated by benthic Foraminifera, the ostracod assemblage (Finger et al., 2003), and the presence of otoliths of fish species in the genus *Steindachneria* (Nolf, 2002). This contrasting evidence may be due to slumping of shallow-water sediments into deeper water, a model supported by the presence of reworked mudstone clasts. The sedimentology of these deposits was discussed elsewhere (Encinas et al., 2003). **Etymology:** Named in honor of G. J. Vermeij (University of California, Davis, Geology) who contributed greatly to the knowledge of the Pseudolividae. **Discussion:** Another possibly conspecific specimen is SGO.PI.766 (Figure 5, height 30.9 mm) from Navidad. Other species from the Tertiary of Chile resembling Macron vermeij are the Eocene Sulcobuccinum retusum, and the Pliocene Testallium escalonia. Sulcobuccinum retusum has the pseudolivid groove situated high on the last whorl and is smooth inside the outer lip. Juvenile specimens of Testallium cepa (Figures 4, 6, 9, 12, both part of SGO.PI.3714) of about the same size as presumably adult Macron vermeiji differ in not having lirae inside the outer lip, in having more numerous spiral elements below the pseudolivid groove, and in having the columellar callus secreted onto former whorls, rather than cutting deeply into them. Most of the larger specimens of Testallium cepa (Figures 2, 3, part of SGO.PI.3714, height 46 mm) have additional spiral elements above the pseudolivid groove and a more globose appearance, characters that are even more prominent in adults. The Pliocene Testallium escalonia has a higher spire, stronger spiral sculpture and no lirae inside the outer lip. The spire of *Macron vermeiji* is relatively much lower than that of any previously known species of *Macron* (height-to-width ratio 1.25 in *M. vermeiji* compared with 1.9 to 4.1 in other species) and its last whorl is relatively larger (83% of total shell height compared with 68 to 74% in other species) so that the diagnosis of the genus given by Vermeij (1998) must be emended to include this species. Macron vermeiji extends the geographic distribution of the otherwise strictly northern Pacific genus Macron into the southeastern Pacific. It is the lowest-spired species of Macron and thus closely resembles species of Pseudoliva Swainson, 1840, from which it mainly differs by the lirate interior of its outer lip. It is not only intermediate in shell-form but also comes from an area geographically between the mainly northeast Pacific Macron and the South African Pseudoliva. These genera have their origins in the (lower) Miocene of Venezuela (Macron; Gibson-Smith et al., 1997) and Madeira (Pseudoliva; Vermeij, 1998). Figures 2–12. Pseudolividae from the Navidad Formation. 2–4, 6, 9, 12. Testallium cepa (Sowerby, 1846). 2, 3. Adult specimen SGO.PI.3714, height 46 mm. 4, 9. Juvenile specimen SGO.PI.3714, height 26.3 mm. 6, 12. Juvenile specimen SGO.PI.3714, height 23.5 mm. 5. 7, 8, 10, 11. Macron vermeiji new species. 5. cf. Macron cf. vermeiji, plaster cast of SGO.PI.766, height 30.9 mm (photo courtesy of T. J. DeVries. 7, 10. Paratype SGO.PI.3714, height 22.5 mm. 8, 11. Holotype SGO.PI.5988, height 24 mm.) Figures 13–20. Pseudolividae from the Chilean Tertiary. 13, 14. Sulcobuccinum retusum (Philippi, 1887). Holotype SGO.PI.765, height 43 mm. 16, 19. Triumphis maitenlahuensis sp. nov. Holotype SGO.PI.5523, height 29 mm. 15, 17, 18, 20. Testallium cepa (Sowerby, 1846). 15, 17. Syntype of Monoceros opimum Hupé, 1854, MNHN-LG Gg2002/70, height 58 mm. 18, 20. Holotype of Monoceros labiale Hupé, 1854. MNHN-LG Gg2002/71, height 80 mm. Genus Testallium Vermeij and DeVries, 1997 **Type Species:** Gastridium cepa Sowerby, 1846; Miocene, Chile. Testallium cepa (Sowerby, 1846) (Figures 2–4, 6, 9, 12, 15, 17, 18, 20) **Discussion:** Testallium cepa has been discussed in detail by Vermeij and DeVries (1997) and it is present at most Miocene localities from southern Peru (DeVries and Frassinetti, 2003) to Isla Stokes, southern Chile (Frassinetti, 2001) and abundant in the Navidad Formation. However, juvenile specimens (Figures 4, 6, 9, 12) have not been figured and the three syntypes of Monoceros opimum Hupé, 1854 (Figures 15, 17; MNHN-LG Gg2002/70; height 58 mm) and the holotype of Monoceros labiale Hupé, 1854 (Figures 18, 20; MNHN-LG Gg2002/71; height 80 mm), put into synonymy with Testallium cepa by Vermeij and DeVries (1997), were unavailable at that time because the location of the collection described by Hupé was unknown. Rediscovery of Hupé's types in the MNHN-LG allows us to figure those specimens herein, confirming the inferred synonymy. According to new data its stratigraphic range is lowermost (DeVries and Frassinetti, 2003) to upper Miocene (Finger et al., 2003). Genus Triumphis Gray, 1857 Type Species: Buccinum distortum Wood, 1828; Recent, Caribbean Sea. Triumphis maitenlahuensis new species (Figures 16, 19) **Description:** Shell moderately large with stepped whorl profile. Protoconch unknown. Whorls with steep, almost straight, slightly concave sides. Last whorl with strong, ridge-like shoulder. Whorl slightly constricted below shoulder, forming a concave area followed by convex, globose region. Whorl anteriorly constricted and thus well defining short, slightly twisted siphonal canal. Broad, flat primary spiral cords present on whole whorl, two to three finer secondary cords between them. Axial sculpture of low, blunt nodes between suture and periphery present on early whorls, becoming obsolete on last whorl. Aperture oval, columella smooth with weak fold at opening of siphonal canal. Outer lip unknown. Siphonal fasciole strongly developed. Pseudoumbilicus formed by fasciole and inner lip might be an artifact caused by erosion. Height 29 mm. Type Material: Holotype SGO.PI.5523. Type Locality (Figure 1): Early late Miocene (Tortonian), Navidad Formation. At the coastal cliff about 500 m south of the Estero Maitenlahue, Chile to the north of Río Rapel, at locality 140976.4 of Covacevich and Frassinetti (1986). Occurrence: The new species of *Triumphis* was collected about 500 m south of Estero Maitenlahue to the north of Río Rapel (at the upper margin of Figure 1). This specific locality has not been dated, but nearby localities indicate a Tortonian (upper Miocene) age (Finger et al., 2003). **Etymology:** Named after the type locality near the Estero Maitenlahue, Chile. **Discussion:** Triumphis has been included in the family Buccinidae Rafinesque, 1815 by most workers (e.g. Keen, 1971), but Vermeij (1998) transferred it to Pseudolividae and this is followed here. Apart from the Recent type species, Triumphis distorta, only one poorly preserved specimen of Triumphis sp. from the middle Miocene of Kern County, California has been reported (Addicott, 1970). Triumphis maitenlahuensis differs from Triumphis distorta in being constricted below the ridgelike shoulder, in having subequal spiral ornament, and in having a well-defined siphonal canal. It differs from species of the similar genus Nicema Woodring, 1964, by having its ridge-like shoulder as an exterior projection of the posterior notch at the suture and not below the notch and suture. Nicema was considered to belong to the buccinid subfamily Photinae Troschel, 1867, by Vermeij (1998). Triumphis maitenlahuensis could be an intermediate species between T. distorta and the genus Nicema; however, as Vermeij (1998) adequately observed, "anatomical data and molecular sequences will be needed to confirm the phylogenetic affinities of Triumphis" (p. 73), and "anatomical observations on the living N. subrostrata will be needed to confirm assignment of *Nicema* to the Photinae" (p. 74). # ACKNOWLEDGMENTS Klaus Bandel is thanked for discussions and companionship in the field, S. Kiel for comments on an early draft of the manuscript, and E. Vinx for taking some of the photographs (all Geologisch-Paläontologisches Institut und Museum, Universität Hamburg, Germany). Alan G. Beu (Lower Hutt, New Zealand) made very valuable comments including those of a linguistic nature. Philippe Bouchet confirmed attribution of Pseudolividae to de Gregorio. Comments by T. J. DeVries and two anonymous reviewers are gratefully acknowledged. This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) grant Ba 675/25, a grant of the University of Hamburg and a COLPARSYST-grant to study the collections in Paris. ## LITERATURE CITED Addicott, W. O. 1970. Miocene gastropods and biostratigraphy of the Kern River area, California. United States Geological Survey Professional Paper 642: 1–174. Cossmann, M. 1901. Essais de Paleoconchologie Comparée 4. Paris, M. Cossmann, 293 pp. Covacevich, V. and D. Frassinetti. 1986. El género Cancellaria - en el Mioceno de Chile con descripción de cuatro especies nuevas (Gastropoda: Cancellariidae). Revista Geológica de Chile 28–29: 33–67. - de Gregorio, A. 1880. Fauna di San Giovanni Ilarione (Parisiano), Parte 1 (1), Palermo, i–xxviii, 1–110. - d'Orbigny, A. D. 1842. Voyage dans l'Amerique méridionale, Vol. 3. Part 4, Paléontologie. Paris, 187 pp. - DeVries, T. J. and D. Frassinetti. 2003. Range extensions and biogeographic implications of Chilean Neogene mollusks found in Peru. Boletín del Museo Nacional de Historia Natural de Chile 52: 119–135. - Encinas, A., K. Finger, S. Nielsen, M. Suárez, D. Peterson and J. Le Roux. 2003. Evolución tectono-sedimentaria de la Cuenca Neógena de Navidad (33°40′ S-34°15′ S), Chile central. 10° Congreso Geológico Chileno. 2003. Concepción, Chile. - Finger, K., D. Peterson, A. Encinas and S. Nielsen. 2003. Microfaunal indications of late Miocene deep-water basins off the central coast of Chile. 10° Congreso Geológico Chileno. 2003. Concepción, Chile. - Fischer, P. 1884. Manuel de Conchyliologie et de paléontologie conchyliologique ou histoire naturelle des mollusques vivants et fossiles. Fascicule VII. Paris, F. Savy, 609–688. - Frassinetti, D. 2001. Moluscos bivalvos y gastrópodos del Mioceno marino de Isla Stokes, Sur de Chile. Boletín del Museo Nacional de Historia Natural de Chile 50: 73–90. - Frassinetti, D and V. Covacevich. 1993. Bivalvos del Mioceno de Matanzas (Formación Navidad, Chile Central). Boletín del Museo Nacional de Historia Natural de Chile 44: 73– 97 - Gibson-Smith, J., W. Gibson-Smith and G. J. Vermeij. 1997.Pacific Mexican affinities of new species of the gastropod - genera *Macron* (Pseudolividae) and *Neorapana* (Muricidae) from the Cantaure Formation (Early Miocene) of Venezuela. The Veliger 40: 358–363. - Herm, D. 1969. Marines Pliozän und Pleistozän in Nord- und Mittel-Chile unter besonderer Berücksichtigung der Entwicklung der Mollusken-Faunen. Zitteliana 2: 1–159. - Hupé, H. 1854. Malacología y conquiliología. In: C. Gay (ed.) Historia física y política de Chile. Vol. 8 and Atlas (Zoología). Maulde et Renou, Paris, 449 pp. - Keen, A. M. 1971. Sea Shells of Tropical West America: Marine Mollusks from Baja California to Peru. Second edition. Stanford University Press, Stanford, 1064 pp. - Nielsen, S. N. and T. J. DeVries. 2002. Tertiary Xenophoridae (Gastropoda) of western South America. The Nautilus 116: 71–78. - Nolf, D. 2002. Fossil record and paleobiogeography of Steindachneria (Pisces, Gadiformes). Courier Forschungs-Institut Senckenberg 237: 89–95. - Philippi, R. A. 1887. Die tertiären und quartären Versteinerungen Chiles. F. A. Brockhaus, Leipzig, 266 pp. - Sowerby, G. B., I. 1846. Descriptions of Tertiary fossil shells from South America, p. 249–264. Appendix to C. Darwin, Geological observations on South America. Smith, Elder & Co., London. - Vermeij, G. J. 1997. Decline and contraction: the history of the relictual gastropod family Pseudolividae. Geobios 30: 997– 1002. - Vermeij, G. J. 1998. Generic revision of the neogastropod family Pseudolividae. The Nautilus 111: 53–84. - Vermeij, G. J. and T. J. DeVries. 1997. Taxonomic remarks on Cenozoic pseudolivid gastropods from South America. The Veliger 40: 23–28.