A REVISION OF THE TYPE SPECIMENS OF TERTIARY MOLLUSCS FROM CHILE AND ARGENTINA DESCRIBED BY D’ORBIGNY (1842), SOWERBY (1846) AND HUPÉ (1854)

Miguel Griffin†
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Av. Uruguay 151, (L6300CLB) Santa Rosa, La Pampa, Argentina and CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, República Argentina)

Sven N. Nielsen‡
GeoForschungsZentrum Potsdam, Sektion 3.1, Telegrafenberg, 14473 Potsdam, Germany

SYNOPSIS The 122 Cenozoic molluscan species from Chile and Argentina introduced by d’Orbigny (1842), Sowerby (1846) and Hupé (1854) are all based on material collected during early expeditions to that part of the world during the nineteenth century. These species are revised herein and many are assigned to appropriate modern genera. A brief list of synonyms is given, stating only those references – in addition to the original one – in which material is illustrated or new combinations provided. Comments on the nature and preservation of the type material and on the status of the taxa are provided in order to clarify nomenclatural and taxonomic confusion that has arisen over the years because of the poor understanding of the types. Most of the type material is re-illustrated. Necessary lectotypes are designated for the following: Pecten centralis Sowerby, 1846, Venus meridionalis Sowerby, 1846, Venus munsteri d’Orbigny, 1842, Ostrea patagonica d’Orbigny, 1842, Fusus cleryanus d’Orbigny, 1842, Trochus collaris Sowerby, 1846, Turritella patagonica Sowerby, 1846 and Scalaria rugulosa Sowerby, 1846. Neotypes are designated for Venus petitiana d’Orbigny, 1842 and Pleurotoma lanceolata Hupé, 1854. Two new names are provided to remove homonymy: Inquisitor lingulacaninus for Pleurotoma lanceolata Hupé, 1854 non Reeve, 1845 and Palaeomelon jeffi for Voluta triplicata Sowerby, 1846 non Donovan, 1802. Whenever possible, type localities are as closely circumscribed as permitted by the data provided in the original references, later references by other authors, evidence drawn from the type material itself and personal survey of the putative localities. Entries are organised alphabetically under the original specific name. They are separated taxonomically into bivalves, gastropods and scaphopods.

KEY WORDS Bivalvia, Cainozoic, Gastropoda, Scaphopoda, South America, taxonomy

Contents

Introduction 254
Material 255
The d’Orbigny Collection 255
The Gay Collection 255
The Darwin Collection 255
Locality 255
Santa Cruz, Argentina 255
Port San Julián, Argentina 256
Puerto Deseado, Argentina (= Port Desire) 256

†E-mail address: miguelgriffin@aol.com
‡Current address: Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
San José, Valdés Peninsula, Argentina (= St. Joseph) 256
Mouth of the Río Negro, Argentina 256
La Bajada, Argentina (= Bajada; Bajada Grande; Bajada de Santa Fé; ‘Santa Fé’) 256
Cahuil, Topocalma and Navidad, Chile 256
Chiloé, Chile 256

Systematic palaeontology 257
Bivalvia 257

actinodes Sowerby, 1846 [Pecten] 257
aerea Hupé, 1854 [Venus] 257
alta Sowerby, 1846 [Cucullaea] 257
alternans Sowerby, 1846 [Anomia] 257
alvarezi d’Orbigny, 1842 [Ostrea] 259
auca d’Orbigny, 1842 [Macra] 259
bayii Hupé, 1854 [Venus] 259
bonplandiana d’Orbigny, 1842 [Arca] 260
brevirostrum Hupé, 1854 [Amphidesma] 261
centralis Sowerby, 1846 [Pecten] 261
chilensis d’Orbigny, 1842 [Venus] 263
cleryana d’Orbigny, 1842 [Venus] 263
colchaguana Hupé, 1854 [Macra] 264
colchaguensis Sowerby, 1854 [Pectunculus] 264
coquandi Hupé, 1854 [Venus] 264
coquimbensis d’Orbigny, 1842 [Panopea] 264
darwinianus d’Orbigny, 1842 [Pecten] 264
darwinii Sowerby, 1846 [Macra] 266
diluvii d’Orbigny, 1842 [Unio] 266
elegans Hupé, 1854 [Nucula] 266
ferrarisi d’Orbigny, 1842 [Ostrea] 268
gaudichaudi d’Orbigny, 1842 [Perna] 268
geminatus Sowerby, 1846 [Pecten] 268
glabra Sowerby, 1846 [Nucula?] 269
hanetianus d’Orbigny, 1842 [Venus] 269
hanetianus d’Orbigny, 1842 [Solenocurtus] 269
insolita Sowerby, 1846 [Trigonocelia] 269
insula Hupé, 1854 [Venus] 270
laevigata Sowerby, 1846 [Corbis?] 270
lyelli Sowerby, 1846 [Crassatella] 272
maxima Hupé, 1854 [Ostrea] 272
meridionalis Sowerby, 1846 [Venus] 272
multiradiatum Sowerby, 1846 [Cardium] 272
munsterii d’Orbigny, 1842 [Venus] 275
oblonga Sowerby, 1846 [Tellinides?] 275
ornata Sowerby, 1846 [Nucula] 275
paranensis d’Orbigny, 1842 [Pecten] 276
patagonensis d’Orbigny, 1842 [Pecten] 276
patagonica d’Orbigny, 1842 [Ostrea] 277
patagonica Sowerby, 1846 [Cardita] 277
paytensis d’Orbigny, 1842 [Pectunculus] 277
petitiana d’Orbigny, 1842 [Venus] 281
platense d’Orbigny, 1842 [Cardium] 281
propinquus Hupé, 1854 [Pecten] 281
puelmum Sowerby, 1846 [Cardium] 283
pulvinata Hupé, 1854 [Venus] 283
radula Hupé, 1854 [Amphidesma] 283
rostrata Hupé, 1854 [Ostrea] 283
rouaultii Hupé, 1854 [Venus] 285
rudis Sowerby, 1846 [Pecten] 285
rugata Sowerby, 1846 [Mactra]
simplex Hupé, 1854 [Panopea]
subalbicans Hupé, 1854 [Venus]
sulclosa Sowerby, 1846 [Cytherea]
tenuecostatus Hupé, 1854 [Pecten]
transitoria Hupé, 1854 [Ostrea]
variabilis Hupé, 1854 [Amphidesma]
villanova Hupé, 1854 [Venus]
Gastropoda
affinis Hupé, 1854 [Turritella]
alta Sowerby, 1846 [Voluta]
ambigua d’Orbigny, 1842 [Bulla]
ambiguus Sowerby, 1846 [Monoceros]
ambulacrum Sowerby, 1846 [Turritella]
antiquata d’Orbigny, 1842 [Chilina]
armatum Hupé, 1854 [Triton]
blainvillei d’Orbigny, 1842 [Monoceros]
cepa Sowerby, 1846 [Gastridium]
chilensis Sowerby, 1846 [Turritella]
chiloensis Hupé, 1854 [Oliva]
clathratus Hupé, 1854 [Fusus]
cleranus d’Orbigny, 1842 [Fusus]
collaris Sowerby, 1846 [Trochus]
cosmophila Sowerby, 1846 [Bulla]
costellata Sowerby, 1846 [Terebra]
dimidiata Sowerby, 1846 [Oliva]
discors Sowerby, 1846 [Pleurotoma]
distans Sowerby, 1846 [Pyrula]
echinulata Hupé, 1854 [Pleurotoma]
elegans Hupé, 1854 [Sigaretus]
gaudichaudi d’Orbigny, 1842 [Rostellaria]
gregarea Sowerby, 1846 [Crepidula]
kieneri Hupé, 1854 [Concholepas]
labiata Hupé, 1854 [Monoceros]
laevis Sowerby, 1846 [Trochus]
lanceolata Hupé, 1854 [Pleurotoma]
leucomoicoides Sowerby, 1846 [Triton]
monilifer Sowerby, 1846 [Cassis]
noachinus Sowerby, 1846 [Fusus]
opimum Hupé, 1854 [Monoceros]
orbignyi Hupé, 1854 [Fusus]
orbignyi Hupé, 1854 [Natica]
omata Sowerby, 1846 [Struthiolaria]
pachystoma Hupé, 1854 [Natica]
patagonica Sowerby, 1846 [Turritella]
petitiana d’Orbigny, 1842 [Fusus]
pumila Sowerby, 1846 [Natica]
pyriformis Sowerby, 1846 [Fusus]
regularis Sowerby, 1846 [Fusus]
rauaultii Hupé, 1854 [Trochus]
rugulosa Sowerby, 1846 [Scalaria]
serena d’Orbigny, 1842 [Oliva]
simplex Hupé, 1854 [Oliva]
solida Sowerby, 1846 [Natica]
striatodonosus Hupé, 1854 [Fusus]
striolata Sowerby, 1846 [Natica]
subaequalis Sowerby, 1846 [Pleurotoma]
INTRODUCTION

The first Tertiary molluscs described from Chile and Argentina were those collected by Alcide d’Orbigny during his expedition to South America in the years 1826–1833. D’Orbigny collected Tertiary invertebrates in Entre Ríos and northern Patagonia in Argentina as well as in Central Chile. He also obtained some material from Peru. The results of his work were published in his monumental *Voyage dans l’Amérique Méridionale* (d’Orbigny 1835–1847), of which the Palaeontology section comprises volume 3, part 4, published in 1842.

Shortly after d’Orbigny, Darwin visited South America on board HMS Beagle. During his trip to South America, Darwin visited most of the localities where d’Orbigny had collected his Tertiary molluscs. In addition he also visited southern Patagonia. The Tertiary molluscs collected by him were described by G. B. Sowerby II and published in an Appendix to Darwin’s *Geological Observations on South America* (Darwin 1846). After them, Claude Gay was appointed to the post of Director of the National Museum of Natural History in Santiago, Chile. Upon his return to France, he took with him his large collection of fossils, a situation commented on by Philippi (1887) on the first page of his book on Tertiary fossils from Chile. Gay gave these fossils to H. Hupé, who described them as part of Gay’s *Historia Física y Política de Chile* (Gay 1844–1854). The 8th volume of the Zoological part – containing shells and fossils – was published in 1854 and it is obvious that, while d’Orbigny and Sowerby were in very close contact, Hupé did not even know of Sowerby’s publication and, thus, produced a considerable number of synonyms.

These three collections were the basis for all future studies on the Tertiary molluscan faunas of southern South America. Because of the large number of taxa introduced by these three authors, the importance of their collections cannot be overstated. However, in many instances these collections posed a challenge for later taxonomists. They were all assembled during the first half of the nineteenth century and the knowledge available then on molluscs, both fossil and extant, was still scanty compared to the information amassed on this group since then. This fact is reflected in the taxonomic conclusions on the faunas that these authors studied. Another problem is that their collections included, in many cases, poorly preserved material. Therefore, their descriptions and illustrations of many new species are insufficient and often the taxonomic position of these taxa must remain uncertain even today. In this respect, matters become even worse as data on localities and stratigraphic provenance of their material is frequently vague and impossible to clarify satisfactorily. For instance, d’Orbigny lists ‘Santa Fé’ as the locality for some of his Tertiary mollusc specimens. However, no marine rocks of this age are exposed in Santa Fé, whether the city or the province thus named are considered. Instead, the specimens come from the locality (also mentioned, and more frequently, by d’Orbigny) known as La Bajada. The full name of this locality is La Bajada de Santa Fé (Santa Fé Landing), as it lies across the Paraná river, on its left bank located in the province of Entre Ríos, where the modern city of Paraná has been built. Therefore, special care should be taken when attempting to identify these old localities, in order to avoid further confusion with locality names.

D’Orbigny and Gay housed their collections in the Muséum National d’Histoire Naturelle (MNHN) in Paris, while Darwin did so in the British Museum (Natural History) in London. Ever since, these collections have received little attention from researchers (albeit because of the long distances involved and the impossibility of personally checking the collections) on South American Tertiary molluscs. Most authors based their identifications and comparisons with early taxa on the published descriptions and illustrations. This has sometimes led to confusion and misidentifications, a natural consequence of poor understanding of the type material involved.

In this paper we attempt to put together all the available information on the type material of the three collections. For each taxon introduced by d’Orbigny, Sowerby and Hupé,
we provide, where possible, an updated generic placement, original reference, data on the type material, type localities and repository and comments on the taxonomic status of the name. Most of the type localities were visited and, whenever possible, the stratigraphic provenance of the type material was identified or at least circumscribed as closely as possible. For this we relied on our own knowledge of the area as well as on the specific data provided by the authors, whether in their paleontological descriptions, in the historical and/or geological accounts of their expeditions or in original catalogues accompanying the collections.

Material

The d’Orbigny Collection

This collection, mostly assembled by d’Orbigny himself in South America, is housed in two different laboratories at the Muséum National d’Histoire Naturelle in Paris. Part of it is in the Laboratoire de Paléontologie, where the catalogues, compiled by Hupé, are arranged stratigraphically according to d’Orbigny’s system of Étages. Most of the South American Tertiary material is included in the Catalogue ‘Falunien B’. However, in some cases the material is missing and/or misplaced and/or misidentified. We have searched through the material thoroughly and present here, under each species, a detailed account of the state and status of the type material, as well as the correct Catalogue numbers of any material transferred to the Typothèque (types collection) of the Laboratoire de Paléontologie.

A second part of the collection was never entered into the Catalogues of Paléontologie. This material remained in the collections of the Laboratoire de Géologie and was housed there, together with rock samples from d’Orbigny’s South American Expedition, under Catalogue 3L. Among the rock samples, we were able to identify the type material of several species. These we separated and an appropriate catalogue number for the Typothèque of the Laboratoire de Géologie was attached to them. As for the part of the collection in the Laboratoire de Paléontologie, we also give an account of the state and status of the type material.

In addition to his own material, which d’Orbigny described in his *Voyage*, some taxa were based on material collected by other travellers. Thus, material identified in the Gaudichaud Collection and housed in the Laboratoire de Géologie under Catalogue 20 was described and illustrated by d’Orbigny. It is also included and an appropriate collection number has also been attached to it.

The Gay Collection

The Gay Collection is housed entirely in the Laboratoire de Géologie at the Muséum National d’Histoire Naturelle, under Catalogue 8P ‘Des Roches du Chili et du Pérou recueillies par Mr Gay dans les années 1831 à 1842’. The Collection – housed in the basement of the Géologie et Mineralogie building at the MNHN – was searched and the available types were recovered and are now housed in the Typothèque of the Laboratoire de Géologie. In a few instances the material is seemingly lost. However, over the years the collection has undergone several relocations and it is not unlikely that missing pieces may be misplaced within the Gay Collection or in other collections from overseas housed in the same room in the basement of Géologie et Mineralogie.

The Darwin Collection

The collection of South American Tertiary fossils assembled by Darwin during his trip around the world in HMS Beagle is housed in the Department of Palaeontology at The Natural History Museum, London (formerly the British Museum (Natural History)). The material is perfectly well curated and the types are easily identified by means of the catalogue numbers assigned to each specimen. However, as stated under each appropriate specific entry in the Systematic Paleontology section, below, a few of the type specimens are missing.

Localities

Most type localities (Fig. 1) are briefly explained under each species. However, some of them require a more detailed explanation.

Santa Cruz, Argentina

Sowerby (1846) listed Santa Cruz as the locality from which Darwin collected some of the specimens described by him.
This locality surely refers to the cliffs along the southern coast of the Santa Cruz river estuary, a few kilometres upstream from its opening into the Atlantic Ocean. The rocks exposed throughout these cliffs are included in the Monte León Formation, a unit formally described by Bertels (1970). That author subdivided the Monte León Formation into two members, a lower member which she called Monte Entrada and an upper member that she named Monte Observación (Bertels 1978). Of the two, the only one exposed along the cliffs at Santa Cruz is the Monte Entrada Member. The age of this unit is now considered late Oligocene–early Miocene, or even early Miocene (Barreda & Palamarczuck 2000).

Port San Julián, Argentina

This locality refers to the area surrounding the bay of San Julián, about 120 km North of Santa Cruz. The rocks exposed in this area are included in the San Julián and Monte León formations. The former is exposed at the base of the cliffs to the north of the present town of San Julián. It was first formally described by Bertels (1970), who later distinguished two members (Bertels 1977), i.e. the Gran Bajo and Meseta Chica members. The outcrops along the coast from where Darwin probably collected his material belong in the Meseta Chica Member, which is of Oligocene age (Barreda 1997). However, at least some of Darwin’s specimens (e.g. one of the specimens of *Pecten centralis*) comes from the Monte León Formation, which at San Julián overlies the San Julián Formation.

Puerto Deseado, Argentina (= Port Desire)

This locality, mentioned by Sowerby (1846), remains somewhat uncertain, although it must lie a few kilometre inland from Port Desire, an area surveyed by Darwin during his trips to Patagonia. The nearest rocks containing marine Cenozoic molluscs are exposed about 20 km from the present town of Puerto Deseado. They are included in the ‘Patagónico’, an informal name for the marine mollusc-bearing rocks of Oligocene–Miocene age from southern Patagonia (Bellosi 1995).

San José, Valdés Peninsula, Argentina (= St. Joseph)

This locality was mentioned by Darwin (1846) and the material he collected there comes from an unidentified bed within the Puerto Madryn Formation (Haller 1979), a unit representing the late Miocene ‘Entrerriense’ transgression (del Río 1992, 1994; del Río & Martínez Chiappara 1998a; del Río et al. 2001).

Mouth of the Río Negro, Argentina

This locality was surveyed by d’Orbigny during his trip to South America and he measured sections and collected fossil material along the coastal area immediately South and West of the mouth of the Río Negro (i.e. the northern coast of the San Matías Gulf). The rocks exposed here are mainly continental, but carry a marine intercalation from which the fossil invertebrates come. This intercalation is variably exposed along the cliff between the mouth of the river and a few kilometres east of the town of San Antonio Oeste, to the West.

At the localities mentioned by d’Orbigny the marine intercalation carries an abundant fauna of oysters, pectinids and anomids. The rocks have been included in the Pliocene Río Negro Formation (Andreis 1965) by some authors (Farinati et al. 1981; Zavala & Freije 2000; Zavala et al. 2000), or in the Barranca Final Formation (Kaasschieter 1963) by Gelós et al. (1992). Zambrano (1972) and Yrigoyen (1975) stated that these deposits belonged in the late Pliocene–Pleistocene Belén Formation (Kaasschieter 1965), and represented supra-neritic deposits that to the west were replaced by the Río Negro Formation. Malumíán (1999) interpreted these marine intercalations as the end of the Miocene transgression (‘Entrerriense’) that covered northern Patagonia and most of Central Argentina (del Río & Martínez Chiappara 1998a) during the late Miocene, suggesting for them a late Miocene–Pliocene age.

La Bajada, Argentina (= Bajada; Bajada de Santa Fé; ‘Santa Fé’)

This locality, mentioned by d’Orbigny (1842), refers to the location of the present city of Paraná, in the province of Entre Ríos (Argentina). The locality, however, is now almost completely urbanised and the exposures are no longer available. Also known as La Bajada de Santa Fé, this name led to some confusion as some of the material collected by d’Orbigny is labelled ‘Santa Fé’. There can be no doubt that he meant La Bajada de Santa Fé, as there are no mollusc-bearing marine rocks exposed along the right bank of the Paraná river, i.e. in the province of Santa Fé. The fossil invertebrates collected by d’Orbigny come from the Paraná Formation (Bravard 1858; Yrigoyen 1969), a unit believed to be late Miocene in age (del Río 1991; del Río & Martínez Chiappara 1998a).

Cahuíl, Topocalma and Navidad, Chile

Hupé (1854) often gave Cahuíl as a type locality. However, as was already noted by Philippi (1887), there are no Tertiary deposits near Cahuíl. Catalogue 8P, listing the Gay collection from Chile – and also written by Hupé – frequently gives Topocalma or Navidad instead of Cahuíl. Cahuíl is, therefore, interpreted as being only the next largest village at that time and not the actual locality, which we consider to be the area around Navidad. Topocalma is a locality at the southern limit of the Navidad Formation (see Encinas et al. 2006). The Navidad Formation was originally introduced by Darwin for the coastal bluffs near Navidad, but he noted that it continued some distance inland. Tavera (1979) divided the formation into three members, which were recently elevated to formation rank by Encinas et al. (2006). The name Navidad Formation was restricted to Tavera’s lowermost member, which agrees with Darwin’s original concept. The, thus redefined, Navidad Formation was dated using planktic foraminifera to be late Miocene to early Pliocene in age (Finger et al. 2007), but the mollusc fauna is reworked (Finger et al. 2007) and has an early Miocene age (DeVries & Frassinetti 2003; Nielsen & Gladney 2006).

Chiloé, Chile

Hupé’s (1854) locality of Chiloé usually refers to the coastal cliffs at Cucao. Sowerby (1846) usually lists it as simply the east coast of Chiloé, while Darwin (1846: 121) states
that his specimens came from ‘one layer on the N.W. side of Lemuy [. . .]. I found marine remains only in one spot, in some concretions of hard calcareous sandstone.’

SYSTEMATIC PALAEONTOLOGY

The systematic section of this paper is divided into three parts, namely, Bivalvia, Gastropoda and Scaphopoda. In each part, species are entered alphabetically under the specific name originally used by the author, with the original generic name in square brackets. This is followed by the name (centred) under the correct generic assignment and, where applicable, the status of the name (*nomen dubium*, new combination, etc). Synonymy lists are not exhaustive and only include those references in which material (whether types or not) was illustrated or those in which new combinations were proposed by subsequent authors. As this paper focuses on the three collections, younger synonyms encountered during revision of the faunas are usually not included. However, younger synonyms are included in those cases in which the synonymy has already been published or, of course, in the case of replacement names.

Taxonomic terms and abbreviations: v, material studied by the authors; *, first description of taxon to which the assignment of specimen refers.

Institutional abbreviations used in this work are as follows:

- **NHM** = The Natural History Museum, London, Department of Palaeontology, (Darwin Collection).
- **MNHN-BIMM** = Muséum national d’Histoire naturelle, Centre Biologie des Invertébrés Marins et Malacologie, Laboratoire de Malacologie, Paris.
- **MNHN** = Muséum national d’Histoire naturelle, Paris (d’Orbigny, Gay and Gaudichaud Collections).
- **SGO.PI** = Museo Nacional de Historia Natural, Paleontología de Invertebrados, Santiago, Chile.

Bivalvia

actinodes Sowerby, 1846 [*Pecten*]

Zygochlamys actinodes (Sowerby, 1846) (Pl. 1, fig. 1)

v1846 *Pecten actinodes* Sowerby: 253, pl. 3, fig. 33.
1921 *Chlamys theresinae*; Roveretto: 27, fig. 27a.
1992 *Chlamys actinodes* (Sowerby); del Río: 27–30, pl. 5, figs 1–4; pl. 6, figs 1–2; text figs 5–8.
2000 ‘*Chlamys* actinodes’; del Río: fig. 10.2.
2002 *Chlamys actinodes* (Sowerby, 1846); Martínez & del Río fig. 13.1.

TYPE MATERIAL. Lectotype: NHM-L27960, a left valve, less complete than suggested by the figure (Sowerby 1846: pl. 3, fig. 33), with a fragment missing from the antero-ventral margin, with two small oysters attached to the disc on the postero-dorsal margin and with the anterior margin of the anterior auricle strongly forward and almost completely straight, from San José; paralecotype: NHM-L27983, a juvenile right valve from San José; paralecotype: NHM-L27982, a large (height 115 mm, width 120 mm), complete and well preserved right valve, with the umbo and auricles a little hidden in the soft fawn-weathered sandstone, from San José. The identity of this specimen is doubtful but it certainly belongs in a different genus.

TYPE LOCALITY. ‘San José, Patagonia’. As pointed out by del Río (1992: 26), the type locality of this species must remain uncertain, as the reference given by Darwin (1846) suggests it may come from anywhere in the Valdés Peninsula area, in northeastern Chubut, Argentina. The exact stratigraphical provenence of the material is also uncertain, but it certainly comes from a bed within the late Miocene Puerto Madryn Formation, where this species is quite common.

REMARKS. Del Río (1992: text fig. 7) illustrated a cast of the left valve labelled NHM-L27960, which she referred to as the ‘holotype’. Apparently she was unaware of the existence of the other syntypes (see del Río 1992: 26), Sowerby’s original description does not clearly imply that there was more than one specimen. Therefore, this ‘designation by inference of holotype’ is valid according to Article 74.6 of the ICZN (1999).

aerea Hupé, 1854 [*Venus*]

Rerotapes exalbidus (Dillwyn, 1817) (Pl. 1, figs 2–4)

v1854 *Venus subalbicans* Hupé: 339.
v1887 *Venus aerea* Hupé; Philippi: 111–112.
v1887 *Venus subalbicans* Hupé; Philippi: 122.

TYPE MATERIAL. There are three syntypes and two fragments in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/57. They are labeled *Venus aerea* Hupé.

TYPE LOCALITY. ‘Quiriquina, cerca de Concepción’ [Quiriquina Island, near Concepción, Chile].

REMARKS. This species was neither mentioned nor figured by Frassinetti (1974) in his list of *Venus* from Chile. The type material belongs in *Rerotapes* del Río, 1997 (p. 90), a possible junior synonym of *Frigichione* Fletcher, 1938 [type species *Frigichione permagna* Fletcher, 1938]. The only available specimens are close to *Rerotapes exalbidus* (Dillwyn, 1817), an extant species living along the coasts of southern South America.

This species has not been reported from Cretaceous or Paleocene rocks exposed on Quiriquina Island (Wilckens 1904; Stinnesbeck 1986) and the excellent preservation demonstrates that such a provenance is incorrect. Although the published type locality is Quiriquina, Catalogue 8P states ‘‘Arauco’’ as the locality. If such a mistake were proven and the material did actually come from the Pliocene Tubul Formation of Arauco, then this species would be a synonym of *Rerotapes exalbidus*, a common species in Arauco. This scenario is most likely, and *Venus aerea* and *V. subalbicans* have been synonymised with *Rerotapes exalbidus* by S.N. Nielsen & C. Valdovinos (unpublished results) after their revision of a large suite of specimens from the Tubul Formation. Those authors also provided an extensive synonymy list.
Plate 1 Fig. 1 *Zygochlamys actinodes* (Sowerby, 1846). Lectotype NHM-L27960 (height = 63.6 mm). Figs 2–4 *Retrotapes exalbidus* (Dillwyn, 1817). One of three syntypes of *Venus aerea* Hupé, 1854, MNHN Gg2002/57 (height = 58.6 mm). Figs 5–8 *Cucullea alta* Sowerby, 1846. 5–6, syntype NHM-L27685 (height 81.6 mm). 7–8, syntype NHM-L27686 (height 42.6 mm).
altas Sowerby, 1846 [Cucullaeae]

Cucullaea alta Sowerby, 1846 (Pl. 1, figs 5–8)

V 1846 *Cucullaea alta* Sowerby: 252, pl. 2, figs 22–23.

v 1902 *Cucullaea alta* Sowerby; Ortmann: 86, pl. 25, figs 4a–c.

v 1904 *Cucullaea multitosta* Ih.: Ihering: 9, figs 2–4 (non Ihering, 1897).

? 1937 *Cucullaea calafatensis* n. f.; Covacevich: 18, pl. 2, figs 17–19, pl. 3, fig. 1.

v 2004b *Cucullaea (Monteleonia) alta* (Sowerby); del Río & Camacho: 68, pl. 11.1.

TYPE MATERIAL. Syntypes NHM-L27685 and NHM-L27686.

TYPE LOCALITY. Syntype NHM-L27686 is from Santa Cruz, while NHM-L27685 includes two specimens (a large glued valve and the hinge of another, possibly belonging to the same shell) from Port Desire, about 500 km to the north of Santa Cruz. Both syntypes come from rocks of equivalent age, i.e. late Oligocene–early Miocene.

REMARKS. Syntype NHM-L27686 is the small, broken and glued specimen figured by Sowerby (1846: pl. 2, fig. 23) and showing the interior of the valve. Syntype NHM-L27685 includes two specimens, one of them is a large nearly complete valve of which the hinge only was figured by Sowerby (1846: pl. 2, fig. 22). The other specimen seems to be the incomplete hinge of the opposite valve of the same specimen.

alterna Sowerby, 1846 [Anomia]

Pododesmus (Monia) alternans (Sowerby, 1846) (Pl. 2, figs 1–2)

V 1846 *Anomia alternans* Sowerby: 252, pl. 2, fig. 25.

1887 *Anomia alternans* Sow.; Philippi: 209, pl. 55, fig. 12 (from Sowerby).

TYPE MATERIAL. Holotype: NHM-L27962.

TYPE LOCALITY. Coquimbo, Chile.

REMARKS. The holotype is an upper (free) valve of a species of *Pododesmus (Monia)*, in which the muscle scars (i.e. the internal aragonitic layer) are lost but the exterior sculpture is well preserved.

According to Philippi (1887: 209), this species also occurs at Caldera, in northern Chile, while Herm (1969: 110) mentioned it from Chañaral de Azeitunas and La Serena.

alvarezi d'Orbigny, 1842 [Ostrea]

Cubitostrea alvarezi (d'Orbigny, 1842) (Pl. 2, figs 3–4)

V 1842 *Ostrea Alvarezi* d'Orbigny: 134, pl. 7, fig. 19.

1901 *Ostrea Alvarezi* D'Orb.: Borchert: 19–20, pl. 1, figs 1–4.

1939 *Ostrea Alvarezi* d'Orb.; Wahnish: 150–151, pl. 11, figs 1a–1b.

1967 *Ostrea alvarezi* d'Orbigny; Camacho: 68, pl. 11, figs 1a–1b.

1998b *Ostrea alvarezi* d’Orbigny, 1842; del Río & Martínez Chiappara: 55, pl. 7, figs 7–8, pl. 13, figs 8–10, pl. 17, figs 1–3.

2000 *‘Ostrea’ alvarezi*; del Río: figs 10.7, 10.8.

TYPE MATERIAL. The only specimen figured by d’Orbigny (1842: pl. 7, fig. 19) is the left valve housed in the Typothèque of the Laboratoire de Paléontologie at the MNHN in Paris, under number MNHN A14085, as ‘Ostrea Ferrarisi’ (both in Catalogue Falunien B and on the label with the specimen).

As d’Orbigny described the right valve as well, we assume that there should have been other syntypes. One of them is present in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2005/1.

TYPE LOCALITY. ‘… à la Bajada, province d’Entre Ríos, république Argentine… au sein des grès blanchâtres quartzeux des terrains tertiaires marins …’[… à la Bajada, province of Entre Ríos, Argentine Republic… within the whitish quartz sands of the marine beds …].

REMARKS. The specimen figured by d’Orbigny is a juvenile of this widespread oyster known from Entre Ríos and northeastern Patagonia. It is attached to a small pebbicnid. According to ICZN (1999) Article 33.4, the original spelling *alvarezi* must be used for this species.

auca d'Orbigny, 1842 [Mactra]

Mactra auca d’Orbigny, 1842 (Pl. 2, figs 5–6)

V 1842 *Mactra auca* d’Orbigny: 125, pl. 14, figs 19, 20.

1887 *Venus controversa* Philippi: 126, pl. 31, fig. 3 (from d’Orbigny) (as *Mactra auca* on the plate).

TYPE MATERIAL. The type material of this species could not be located in the Collections at the MNHN in Paris. It is presumably lost.

TYPE LOCALITY. ‘… dans le grès tertiaire des environs de Coquimbo, au nord du Chili’ [… in the Tertiary sand around Coquimbo, in northern Chile].

REMARKS. This species is known only from the holotype, which is an internal mould. Although it is lost, the figure provided by d’Orbigny (1842: pl. 14, fig. 19, 20) is enough to assess that it is an unidentifiable species and thus a nomen dubium.

According to Philippi (1887: 126) this species does not belong in *Mactra* but in *Venus*. Therefore, as the specific name *auca* was preoccupied by d’Orbigny himself, he introduced a new name for it, i.e. *Venus controversa*.

baylì Hupé, 1854 [Venus]

Pitar? baylì (Hupé, 1854) (Pl. 2, figs 7–9)

1887 *Artemis (Venus) Baylì* Hupé; Philippi: 108.

TYPE MATERIAL. There are three syntypes of this species in the Typothèque of the Laboratoire de Géologie under number MNHN Gg2002/48.
Plate 2

TYPE LOCALITY. ‘Chiloé’. Chiloé Island, Chile. Most probably it comes from Cucao.

REMARKS. The material is very poor, but enough shell is left to suggest it might belong in Pitar Römer, 1857. The smaller syntype closely resembles Chione rodulfi Frassinetti & Covacevich, 1993 (p. 89–91, figs 33–36) from the Navidad Formation (early to middle Miocene) of Matanzas, Chile. The only apparent difference between the two species is the general shell outline and the better developed ornamentation in the material from Matanzas.

bonplandiana d’Orbigny, 1842 [Arca]
Anadara bonplandiana (d’Orbigny, 1842) (Pl. 2, figs 10–11)

v*1842 Arca Bonplandiana d’Orbigny: 130, pl. 14, figs 15–18.

1893 Arca lirata Philippi: 11, pl. 1, fig. 14 (non Philippi, 1887).
1939 Arca Bonplandiana, d’Orb.; Wahnish: 149, pl. 2, figs 3a–3b.
1966 Anadara bonplandiana (d’Orbigny); Camacho: 55–56, pl. 8, figs 10a–10b.
1987 Anadara (Rasia) lirata Philippi; del Río: 483–484, pl. 1, fig. 2.
1987 Anadara (Rasia) bravardi n. sp.; del Río: 484–485, pl. 1, fig. 3.
1987 Anadara (Rasia) plana n. sp.; del Río: 485, pl. 1, fig. 4.
1987 Scapharca (Potiarca) diamentensis n. sp.; del Río: 487, pl. 2, fig. 2.
1987 Scapharca (Potiarca) frenguellii (Doello Jurado); del Río: 488, pl. 2, fig. 3.
1988 *Anadara (Rasia) lirata* (Philippi); del Río, pl. 1, fig. 4.

1988 *Anadara (Rasia) bravardi* del Río; del Río, pl. 1, fig. 8.

1991 *Anadara (Rasia) lirata* (Philippi); del Río: 31–32, pl. 1, fig. 3; text-figs 3–4, 7.

1991 *Anadara (Rasia) plana* del Río; del Río: 35–36, text-figs 3–4, 7–8.

1991 *Scapharca (Potia) bomplandeana* (d’Orbigny); del Río: 37–38, pl. 2, fig. 2, text-fig. 10.

1991 *Scapharca (Potia) frenguellii* (Doelio Jurado); del Río: 40, pl. 1, fig. 5, text-fig. 10.

1992 *Anadara (Rasia) lirata* (Philippi); del Río: 15–16, pl. 1, figs 5–6.

1992 *Anadara (Rasia) bravardi* del Río; del Río: 16, pl. 1, figs 2–4.

1998 *Potia camaronesia* (Ihering); del Río & Camacho: 71–72, pl. 5, figs 2–7.

1998b *Anadara (Rasia) lirata* (Philippi, 1893); del Río & Martínez Chiappa: 49–50, pl. 4, figs 8–9; pl. 16, fig. 10, pl. 24, fig. 3.

1998b *Anadara (Rasia) bravardi* del Río, 1987; del Río & Martínez Chiappa: 50, pl. 6, figs 3–4; pl. 13, fig. 11; pl. 16, figs 3–4; pl. 24, figs 1–2.

1998b *Anadara (Rasia) plana* del Río, 1987; del Río & Martínez Chiappa: 50, pl. 16, fig. 17.

1998b *Scapharca (Potia) bomplandeana* (d’Orbigny, 1842); del Río & Martínez Chiappa: 50–51, pl. 16, figs 14–16, pl. 24, fig. 4.

1998b *Scapharca (Potia) diamantensis* del Río, 1987; del Río & Martínez Chiappa: 51, pl. 16, figs 7–9.

1998b *Scapharca (Potia) frenguellii* (Doelio Jurado, 1987); del Río & Martínez Chiappa: 51, pl. 16, figs 12–13 (error pro Doelio Jurado in Frenguelli, 1920: 98; nomen nudum).

2000 *Potia diamantensis*; del Río; fig. 6.

2000 *Potia bomplandeana*; del Río; fig. 7.

2002 *Scapharca bomplandeana* (d’Orbigny, 1842); Martínez & del Río; fig. 12.2.

TYPE MATERIAL. One syntype in the Typothèque of the Laboratoire de Paléontologie, MNHN-A13944 (Santa Fé); four syntypes in the Typothèque of the Laboratoire de Géologie, MNHN-Gg2005/2 (Ensenada de Ros and mouth of the Río Negro).

TYPE LOCALITY. ‘... entre le Río Negro et l’Ensenada de Ros, au sud du Carmen de Patagonie; ... à la Bajada, province d’Entre Rios, république Argentine’ [Between the Río Negro and Ensenada de Ros, south of Carmen de Patagonia; ... at the Bajada, province of Entre Ríos, Argentine Republic]. Although d’Orbigny (1842: 139) did not mention Santa Fé as a locality, the specimen in the Laboratoire de Paléontologie is certainly a syntype and probably comes from La Bajada, which is directly across the Paraná river in front of the city of Santa Fé. No outcrops of the Paraná Formation or any other marine fossil-bearing unit are exposed at the latter locality.

REMARKS. There is one syntype remaining in the collection of the MNHN, under number MNHN-A13944. This specimen is a very broken left valve, but might be identified with this widely ranging species. D’Orbigny (1842: 130) stated that it was an uncommon taxon, although this is not really the case, as it occurs frequently in many exposures in Entre Ríos and Northern Patagonia.

In the Typothèque at the Laboratoire de Géologie in the MNHN, under number MNHN-Gg2005/2, there are four additional syntypes labelled ‘Arches’ from ‘entre l’Ensenada de Ros et l’embouchure du Río Negro’ [between Ensenada Ros and the mouth of the Río Negro]. These specimens are very different from the other syntype and from other material referable to this species that we have seen from Patagonia and Entre Ríos (see synonymy above). They are much larger and with a much thicker shell. D’Orbigny himself had noticed this and considered that most of his material comprised juveniles, as he had ‘fragments that were at least double in size’. It would probably be necessary to designate a lectotype for *Anadara bomplandiana*, but we refrain from doing so until further collection of material from Ensenada de Ros allows proper assessment of this taxon. The single syntype from Paraná left in the MNHN (Paléontologie) collection is very poorly preserved and a ruling from the ICZN is probably appropriate in order to set aside the available syntypes and select a neotype for this taxon. At present we can only say that the four syntypes numbered MNHN-Gg2005/2 are possibly a different species.

**brevirostrum Hupé, 1854 [Amphidesma] **

‘Amphidesma brevirostrum’ Hupé, 1854 (Pl. 3, figs 1–3)

v1854 *Amphidesma brevirostrum* Hupé: 361 (as *Lucina brevirostra*), pl. 6, fig. 1.

1887 *Semele (Amphidesma) brevirostris* Hupé; Philippi: 150, pl. 28, fig. 8 (from Hupé).

TYPE MATERIAL. The only material referable to this species is the holotype, housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/99.

TYPE LOCALITY. ‘Formaciones Eocenas de Coquimbo’ [Eocene formations of Coquimbo, Chile]. However, there is no Eocene known from that region as far as we know.

REMARKS. The holotype is a very poorly preserved internal mould in which not even traces of ornamentation are left, contrary to what is depicted in Hupé’s figure. It is probably a tellinid, but must remain a nomen dubium.

**centralis Sowerby, 1846 [Pecten] **

Jorgechlamys centralis (Sowerby, 1846) (Pl. 3, fig. 4)

v1846 *Pecten centralis* Sowerby: 253, pl. 3, fig. 31.

1989 *Mesopeplum centralis* (Sowerby); Morra & Erdmann: 120–121, pl. 1, figs 1–2.

1999 ‘Chlamys’ centralis (Sowerby, 1846); Frassinetti & Covacevich: 24, pl. 4, figs 5–7.

2001 *Equichlamys centralis* (Sowerby, 1846); Beu & Darragh: 52–53.

2004a *Jorgechlamys centralis* (Sowerby, 1846); del Río: 695, figs 6.1–6.10.

2004b *Jorgechlamys centralis* (Sowerby, 1846); del Río: fig. 13.5.
Plate 3 Figs 1–3 ‘Amphidesma’ brevirostrum Hupé, 1854. Holotype MNHN Gg2002/99 (height = 37 mm). Fig. 4 Jorgechlamys centralis (Sowerby, 1846). Lectotype NHM-L27696 (height = 78.4 mm). Figs 5–6 ‘Venus’ subchilensis (d’Orbigny, 1852), from pl. 13, figs 12 & 13 of d’Orbigny (1842). Figs 7–9 Pitar? colchaguana (Hupé, 1854). Holotype MNHN Gg2002/82 (height = 47 mm). Figs 10–11 ‘Venus’ cleriana d’Orbigny, 1842, from pl. 13, figs 7 & 8 of d’Orbigny. Figs 12–14 Ameghinomya? coquandi (Hupé, 1854). Holotype MNHN Gg2002/81 (height = 51 mm). Figs 15–17 Glycymeris colchaguensis (Hupé, 1854). Holotype MNHN Gg2002/54 (height = 35.7 mm).
TYPE MATERIAL. Specimen NHM-L27696 was designated lectotype (as ‘tipo’) by Morra & Erdmann (1989: 121), but as Sowerby’s original description clearly implies that there was more than one specimen, their lectotype designation by inference of holotype is invalid (ICZN 1999: Art. 74.5). This specimen is a highly incomplete left valve from ‘Port San Julian, Argentina’. Of the two other syntypes, NHM-L27697 (from Port Desire) is a fragment of the disc of a small specimen with very coarse scales on the costal crests, while NHM-L27698 (also from Port Desire) is a small, highly incomplete umbo from a large and flat specimen, i.e. a left valve, with weak surface sculpture and three prominent plicae. Del Río (2004a) has recently reviewed the large pectinids from the Patagonian Cenozoic and illustrated specimen NHM 27696, which she erroneously considered as the holotype (p. 696, fig. 6.10), probably following Morra & Erdmann (1989). Again, this type designation is invalid, as there are other syntypes, as explained above. As one of the other syntypes belongs in a different species, and in order to stabilise nomenclature and avoid further confusion with this species, we follow general usage and formally designate this specimen (NHM 27696) as lectotype.

TYPE LOCALITY. ‘Port San Julián, Port Desire’, province of Santa Cruz, Argentina. Darwin collected specimen NHM 27696 from the late Oligocene–early Miocene Monte León Formation, which in the area surrounding Port San Julián (albeit not at the exact location of the present city) overlies the San Julián Formation. The other two specimens come from Puerto Deseado (Port Desire). The exact locality and stratigraphical unit from which the latter come is uncertain, but they were probably from the Tertiary beds exposed some 15–20 km inland from Puerto Deseado, the nearest locality with rocks yielding this large pectinid.

REMARKS. The illustration provided by Sowerby appears to be a composite of all three specimens he had available. The width of the main radial costae and the prominence of the scales are greatly overemphasised on the figured specimen, which is the lectotype NHM-L27696. Conversely, paralectotype NHM-L27697 has much coarser scales than the figure, while paralectotype NHM-L27698 accounts for the exaggerated width of the main costae of the figured specimen. This is one of the large pectinids found in the late Oligocene and early Miocene of Patagonia and, as stated by Beu & Darragh (2001: 52–53) fits reasonably well in Equichlamys Iredale, 1929 [type species Pecten bifrons Lamarck, 1819]. It shares with other members of the genus the large inequivalve shells with few strong ribs and shagreen microsculpture covering the entire shell surface.

In her revision of this species, del Río (2004a) included it in the new genus Jorgechlamys del Río, 2004 [type species Myochlamys juliana Ihering, 1907], a view which is followed here. Most of the material she described comes from rocks exposed along the southern coast of the San Jorge Gulf and included by her in the San Julián Formation, although the exact relationship of these rocks with the San Julián Formation exposed further south remains to be fully understood. Likewise, the material referred to this species and described and illustrated by Morra & Erdmann (1989), also comes from rocks exposed along the San Jorge Gulf, i.e. Cañadón El Lobo and Bahía Mazaredo. They also included these sediments in the San Julián Formation of Bertels (1970), the type section of which lies about 400 km to the south. These rocks are probably referable to other lithostratigraphical units (Bellosi, 1995).

chilensis d’Orbigny, 1842 [Venus]
‘Venus’ subchilensis d’Orbigny, 1852 (Pl. 3, figs 5–6)
*1842 Venus chilensis d’Orbigny: 124, pl. 13, figs 12, 13 (as Lucina) (junior primary homonym of V. chilensis Sowerby, 1835).
1852 Venus subchilensis d’Orb. 1847; d’Orbigny: 109 (nomen novum).
1887 Artemis chilensis (Venus) D’Orb.; Philippi: 108, pl. 13, fig. 20.

TYPE MATERIAL. According to Catalogue 3L in the MNHN (Paléontologie), the only specimen of this species would be under number 10892 and this should be the holotype. However, it is missing from the collection and the illustration does not allow identification.

TYPE LOCALITY. ‘... recuelli a Coquimbo (Chili), au sein d’un Grès tertiaire jaunatre ...’ (collected by M. Hanet Clery) [... collected at Coquimbo (Chile), within a yellowish tertiary sandstone].

REMARKS. Only the holotype, an internal mould, is known of this species. The material has not been located in the collections of the MNHN and is presumably lost. The illustrations of this species (as Lucina chilensis d’Orbigny, 1842: pl. 13, figs 12–13) show no characters that would permit identification. Because of the narrow and pointed pallial sinus, Philippi (1887: 108) placed it in Artemis (pro Arthemis Poli, 1795 [type species Venus exoleta Linnaeus, 1758]), an objective synonym of Dosinia (Pectunculus) da Costa, 1778. Any such generic re-allocations are quite impossible – as is even specific identification with any previously described species from Chile – based on the illustrated steinkern. This species therefore remains a nomen dubium.

cleyana d’Orbigny, 1842 [Venus]
‘Venus’ cleyana d’Orbigny, 1842 (Pl. 3, figs 10–11)
*1842 Venus Cleryana d’Orbigny: 123, pl. 13, figs 7, 8.
1887 Venus Cleyana D’Orb.; Philippi: 124, pl. 20, fig. 5.

TYPE MATERIAL. A search through the collections at the MNHN was unsuccessful in locating the holotype of this species. The specimen is presumably lost.

TYPE LOCALITY. ‘Grès tertiaires des environs de Coquimbo’ (collected by M. Hanet Clery) [Tertiary sand around Coquimbo, Chile].

REMARKS. The only specimen available to d’Orbigny was an unidentifiable internal mould. Philippi’s figure of this species (Philippi 1887: 20, fig. 5) is a reproduction of d’Orbigny’s plate 13, fig. 7. However, Philippi had one specimen from Coquimbo (SGO.Pl.171; see Frassinetti 1974) which he referred to this species, but this specimen has no type status. Designation of a neotype may be required after a revision of the Chilean Cenozoic venerids. Meanwhile this species remains a nomen dubium.
colchaguana Hupé, 1854 [Mactra]

Pitar? colchaguana (Hupé, 1854) (Pl. 3, figs 7–9)

v1854 Mactra Colchaguensis Hupé: 349.
1887 *Mactra colchaguensis* Hupé; Philippi: 145.

TYPE MATERIAL. The holotype is housed in the Typothèque of the Laboratoire de Géologie under number MNHN Gg2002/82.

TYPE LOCALITY. ‘Capas de los terrenos terciarios de Cahuil, provincia de Colchagua’ [Tertiary beds of Cahuil, province of Colchagua, i.e. Navidad, central Chile].

REMARKS. The holotype is a closed shell in which the hinge is not visible. Topotypical material in our collections suggests it may be more appropriately placed in _Pitar_ Römer, 1857 [type species *Venus tumens* Gmelin, 1791], with which it shares the same hinge pattern. However, a definite generic position must wait until more material is collected.

colchaguensis Hupé, 1854 [Pectunculus]

Glycymeris colchaguensis (Hupé, 1854) (Pl. 3, figs 15–17)

v1854 *Pectunculus Colchaguensis* Hupé: 302.
1887 _Pectunculus colchaguensis?_ Hupé; Philippi: 184, pl. 37, fig. 8.
1979 _Pectunculus Colchaguensis* Hupé; Tavera: 86, pl. 15, fig. 33.
1984 _Glycymeris_ (_Glycymeris_) _colchaguensis_ (Hupé, 1854); Frassinetti & Covacevich: 112, figs 2–7.

TYPE MATERIAL. The holotype is housed in the Typothèque of the Laboratoire de Géologie under number MNHN Gg2002/54.

TYPE LOCALITY. ‘Formaciones terciarias de Colchagua’ [Tertiary formations of Colchagua, i.e. Navidad, central Chile].

REMARKS. According to Frassinetti & Covacevich (1984), the specimen available to Hupé was a juvenile. They also remarked that this species is restricted to the Navidad Formation (Navidad Member) in the area surrounding Navidad. They assumed that the material described by Philippi as _Pectunculus colchaguensis_ (a name that has since become well established in the literature) was identical to Hupé’s. They incorrectly assumed that the type material was lost (unknown, in their words) so they designated specimen SGO.PI.4156 as the neotype. Such a nomenclatural action cannot be upheld as d’Orbigny’s holotype still exists. In any event, the new species _Glycymeris taverai_ Frassinetti & Covacevich (1984: 116–118, figs 8–22) is actually closer to the holotype of _Glycymeris colchaguensis_ than the specimens that Frassinetti & Covacevich (1984: 112–114, figs 2–7) referred to Hupé’s species. The latter have more circular shells and the ornamentation seems to be finer too. Unfortunately, the holotype of _Glycymeris colchaguensis_ is a closed shell so the interior is not available for comparison; the two taxa illustrated by Frassinetti and Covacevich appear to show differences in the hinge area and internal margins.

couandi Hupé, 1854 [Venus]

Ameginomya couandi (Hupé, 1854) (Pl. 3, figs 12–14)

1887 _Artemis (Venus) Couandi* Hupé; Philippi: 109.

TYPE MATERIAL. The holotype is housed in the Typothèque of the Laboratoire de Géologie under number MNHN Gg2002/81.

TYPE LOCALITY. ‘Cerca de Cahuil’ [Near Cahuil, Chile]. This locality name was used by Hupé for several species from around Navidad.

REMARKS. Philippi (1887: 109) placed this species in _Artemis_ on the basis of the fact that the anterior end is shorter and narrower than the posterior end. The holotype is a closed shell in which the hinge and interior are not visible, but the shell ornamentation is very similar to that of _Ameghinomya_ Ihering, 1907 [type species *Chione argentina* Ihering, 1897].

couimbensis d’Orbigny, 1842 [Panopea]

Panopea couimbensis d’Orbigny, 1842 (Pl. 4, fig. 1)

v1842 *Panopea couimbensis* d’Orbigny: 126–127, pl. 15, figs 7, 8.
1887 *Panopea couimbensis* D’Orb.; Philippi: 160, pl. 34, fig. 1 (from d’Orbigny).
1969 *Panopea couimbensis* d’Orbigny; Herm: 130, pl. 13, figs 5–6.

TYPE MATERIAL. There are three syntypes in the collections at the MNHN in Paris. One of them is the figured specimen (d’Orbigny 1842: pl. 15, figs 7, 8), housed in the Typothèque of the Laboratoire de Paléontologie under number MNHN A13626. The other two specimens, also internal moulds, are housed in the Typothèque of the Laboratoire de Géologie at the MNHN under numbers MNHN-Gg2005/3 and MNHN-Gg2005/4.

TYPE LOCALITY. ‘... dans les grès tertiaires à gros grains des environs de Coquimbo, au nord du Chili’ [... in the coarse grained Tertiary sands around Coquimbo, in northern Chile].

REMARKS. This species is known only from internal moulds. According to Philippi (1887: 160), he collected several moulds at Coquimbo and one of them showed bits of shell preserved near the umbo, with strong commarginal ribs. Herm (1969) synonymised _P. guayacanensis_ Philippi, 1887 with this species and showed how _P. couimbensis_ could be separated from _P. oblonga_ Philippi, 1887.

darwinianus d’Orbigny, 1842 [Pecten]

Amusium darwinianum (d’Orbigny, 1842)

*v1842 Pecten Darwinianus_ d’Orbigny: 133.
1846 _Pecten Darwinianus_ d’Orbigny; Sowerby: 253.
1846 _Pecten Darwinii_; Sowerby, pl. 3, figs 28–29.
1893 _Pecten Darwinianus_ D’Orb.; Philippi: 12, pl. 3, fig. 4.
1897 _Amusium Darwinianum_ (d’Orb.); Ihering: 225–226.
1901 _Pecten Darwinianus_ D’Orb.; Borchert: 22–24, pl. 2, figs 1–2.
1915 _Pecten_ (Amusium) _darwinianum_ d’Orbigny; Doello Jurado: 379.
Plate 4 Fig. 1 Panopea coquimbensis d’Orbigny, 1842. Syntype MNHN A13626 (height = 46 mm). Fig. 2 Mactra darwinii Sowerby, 1846. Syntype NHM-L27977 (height = 25 mm). Figs 3-4 Diplodon diluvii (d’Orbigny, 1842). Neotype Carnegie Museum of Natural History CM 72654 (height = 43 mm). Figs 5-15 Ostrea ferrarisi d’Orbigny, 1842. 5-7, Syntype MNHN Gg2002/107–1 (height 47 mm). 8, Syntype MNHN Gg2002/107–2 (height 68 mm). 9–11, Syntype MNHN Gg2002/107–3 (height 54 mm). 12–13, Syntype MNHN Gg2002/107–5 (height 30.9 mm). 14–15, Syntype MNHN Gg2002/107–4 (height 43.6 mm).
1967 [1966] Amussium darwiniunum (d’Orbigny); Camacho: 65 (partim; non pl. 9, figs 9a–9b).
1991 Amussium darwiniunum (d’Orbigny); del Río: 51–53, pl. 1, fig. 4, pl. 2, fig. 1, pl. 4, figs 2–3.
1998b Amussium darwiniunum (d’Orbigny, 1842); del Río & Martínez Chiaparapa: 57, pl. 18, fig. 4.
2002 Amussium darwiniunum (d’Orbigny, 1842); Martínez & del Río, fig. 12.3.

Type Material. There is one specimen in the d’Orbigny Collection at the Laboratoire de Paléontologie and the Laboratoire de Géologie at the MNHN yielded no results. The only additional topotypic material.

Type Locality. ‘Grès tertiaires de la Bajada, province d’Entre Ríos’ [Tertiary sand at la Bajada, province of Entre Ríos] (now the city of Paraná). The marine lithostratigraphic unit exposed there is the Paraná Formation.

Remarks. This is not a nomen nudum, as the holotype existed and had a description – albeit brief – and differentiating remarks in the original text by d’Orbigny. A neotype would be required in order to fix the name and avoid confusion with Amussium parisi del Río (1992: 23–24, pl. 2, figs 3–4; pl. 3, figs 1–2), which was described from rocks of similar age exposed on Valdés Peninsula (Puerto Madryn Formation) and also referred to the late Miocene. However, such an action should wait until additional material from Paraná is collected and properly described.

darwinii Sowerby, 1846 [Mactra]

Mactra? darwinii Sowerby, 1846 (Pl. 4, fig. 2)

1846 Mactra Darwini Sowerby: 249, pl. 2, fig. 9.
1902 Mactra (?) darwini Sowerby; Ottmann: 149–150, pl. 29, fig. 8.

Type Material. Two syntypes are present in the Darwin Collection at the NHM under numbers NHM-L27977 and NHM-L27985.

Type Locality. Santa Cruz, Argentina.

Remarks. The syntype figured by Sowerby (1846: pl. 2, fig. 9) is specimen NHM-L27977, a broken shell in which a small fragment of hinge is visible, but no teeth; the ventral margin is much less complete than suggested by the figure. The other syntype, NHM-L27985, is another poor specimen, a little taller than the figured one, but with the ventral outline and posterior end completely missing. While possibly belonging in Mactra Linnaeus, 1767 (type species Cardium sulorum Linnaeus, 1758), the generic placement of this species remains uncertain and needs confirmation based on additional topotypic material.

diluvii d’Orbigny, 1842 [Unio]

Unio diluvii d’Orbigny: 127, pl. 7, figs 12–13.

1842 Unio diluvii d’Orbigny: 127, pl. 7, figs 3–4

1842 Unio diluvii (d’Orbigny, 1842) (Pl. 4, figs 3–4)

1969 Diplodon diluvii (d’Orbigny); Parodiz: 73, pl. 9, fig. 2.

Type Material. The type material is presumably lost as it could not be located in collections at the MNHN in Paris. A neotype was designated and figured by Parodiz (1969) and it is housed in the Carnegie Museum of Natural History, Section of Molluscs, under number CM 72654. It comes from the lower Pliocene of the Colorado River, Río Negro Province.

Type Locality. ‘...au sein des terrains tertiaires de la Barranca del Río Negro, près du Río Negro, en Patagonie’ [...within the Tertiary beds of Barranca del Río Negro (northern banks), near Río Negro, in Patagonia].

Remarks. The type material apparently consisted of an internal mould. According to d’Orbigny (1842: 127), he found this species below all the Tertiary oyster-bearing sands of Patagonia, a fact that seems highly unlikely. Parodiz (1969) found it in the lower Pliocene of the Colorado River, north of the Río Negro.

elegans Hupé, 1854 [Nucula]

Tindaria sulculata Gould: 434, pl. 37, figs 539a–539e.
1854 Nucula elegans Hupé: 305, pl. 5, fig. 7.
1856 Leda lugubris: A. Adams: 49.
1887 Nucula elegans Hupé; Philippi: 189, pl. 31, fig. 6.
1889 Leda orangica; Malibole & Rochebrune: 113, pl. 8, fig. 3.
1942 Leda elegans (Hupé); Tavera: 614.
1960 Tindaria (Tindariopsis) sulculata; Powell: 171.
1964 Tindariopsis? sulculata; Dell: 149.
1971 Nuculana sulculata; Dell: 167, pl. 1, figs 1–4, pl. 2, fig. 9.
1983 Tindaria sulcata; Bernard: 11 (synonymy).
1984 Nuculana elegans (Hupé, 1854); Frassinetti & Covacevich: 51, text-fig. 3a, pl. 1, figs 1–5.
1997 Nuculana elegans (Hupé, 1854); Frassinetti: 60, pl. 1, figs 5–7.
1998 Tindariopsis sulculata (Gould, 1852, ex Couthouy MS); Villarroel & Stuardo: 144, figs 1c, 39–40, 80–82, 157–159.
1998 Tindariopsis elegans (Hupé, 1854); Villarroel & Stuardo: 168, figs 2, 148–156.

Type Material. Several syntypes of Nucula elegans Hupé, 1854, in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/56.

Type Locality. According to Hupé (1854), the syntypes of Nucula elegans come from the Eocene formations of Coquimbo (‘Formaciones Eocenas de Coquimbo’), but they are originally labelled as coming from Arauco. Catalogue 8P also states ‘Arauco. Tufa `a grains grossiers, jaun ˆatre, contenant des coquilles marines’ [Arauco. Coarse grained yellowish tuffs containing marine shells]. Because of our own data we are certain that the label and catalogue are correct and the material comes from the Pliocene Tuful Formation of Península Arauco.

Remarks. The name used by Hupé (1854) is commonly accepted as a synonym of Nucula sulculata. However,
Plate 5 Fig. 1 Zygochlamys geminata (Sowerby, 1846). Holotype NHM-L27695 (height = 30.7 mm). Fig. 2 Scalpomactra glabra (Sowerby, 1846). Holotype NHM-L27966 (height = 17.4 mm). Figs 3–5 Tindaria sulculata (Gould, 1852). Syntypes of Nucula elegans Hupé, 1854, MNHN-Gg2002/56. 3, height = 7.3 mm. 4–5, height = 7.4 mm. Figs 6–8 Isognomon gaudichaudi (d’Orbigny, 1842). 6, Syntype MNHN Gg2002/122 (height = 279 mm). 7, Syntype MNHN Gg2002/121 (height = 105 mm). 8, Same specimen as 7, but slightly tilted. Figs 9–10 'Solenocurtus' hanetianus d’Orbigny, 1842, from pl. 15, figs 1 & 2 of d’Orbigny.
Villarroel & Stuardo (1998) separated fossil and extant species by small differences in shell shape and ornamentation, while S.N.N. & C. Valdivinos (unpublished results) could not confirm these differences based on the same material. According to Philippi (1887) this species was also found at Coquimbo and at Tubul by Volckmann. As correctly pointed out by Frassinetti & Covacevich (1995: 51), the species is known as a fossil only from Tubul and Isla Guambilén, and Hupe’s mention of Coquimbo is, as discussed above, erroneous. Localities and ages cited by Villarroel & Stuardo (1998) apparently were taken uncritically from the literature, because there is no Eocene exposed near Coquimbo, nor is there Palaeocene near Navidad. This species is not known from the Miocene deposits of Navidad, Arauco or Chiloé (our unpublished results).

ferrarisi d’Orbigny, 1842 [Ostrea]

Crasnostrea patagonica (d’Orbigny, 1842) (Pl. 4, figs 5–15)

v1842 Ostrea Ferrarisi d’Orbigny: 134, pl. 7, figs 17, 18.
non 1907 Ostrea Ferrarii Orb.; Ihering: 405–406.
non 1969 Ostrea (Ostrea) Ferrarisi d’Orbigny; Herm: 111–112, pl. 6, fig. 4, pl. 7, fig. 1.

TYPE MATERIAL. There are 17 syntypes of this species in the Typothèque of the Laboratoire de Géologie under number MNHN Gg2002/107. One of them is the specimen figured by d’Orbigny (1842: pl. 7, figs 17, 18).

TYPE LOCALITY. ‘...au sein des couches inférieures des terrains tertiaires de Patagonie, dans un grès verdâtre, qui découvre à marée basse, aux Barrancas du Sud, rive gauche de l’embouchure du Río Negro’ [...with the lower beds of the Patagonian Tertiary terrains, in a greenish sand exposed during low tide, at Barrancas del Sud, left bank of the mouth of the Río Negro (northern Patagonia)].

REMARKS. This species is based on juvenile specimens of *Ostrea* patagonica d’Orbigny, 1842 (see below). In the d’Orbigny Collection in the Laboratoire de Paléontologie at the MNHN in Paris, there is an entry in Catalogue Falunien B that reads *Ostrea Ferrasi* under number 11141 (now MNHN A14085). This specimen is the figured specimen (and holotype) of *Ostrea alvarezi* d’Orbigny, 1842, and it has certainly been misplaced in the collection.

Herm’s (1969: 112) claim that this species appears in Pliocene–Pleistocene rocks from northern Chile is incorrect. The specimens illustrated by him are all juveniles of *Crasnostrea transitoria* (Hupé), the common large oyster from the Neogene of central and northern Chile. In his synomynical list of *Ostrea* (Ostrea) *ferrarisi* he also included *Ostrea alvarezi* d’Orbigny, a clearly distinct species from northern Patagonia. The specimen illustrated by d’Orbigny is a juvenile of *Ostrea* patagonica d’Orbigny (see entry under *patagonica* d’Orbigny, 1842 [Ostrea], below).

gaudichaudi d’Orbigny, 1842 [Perna]

Isognomon gaudichaudi (d’Orbigny, 1842) (Pl. 5, figs 6–8)

v1842 Perna Gaudichaudi d’Orbigny: 131, pl. 15, figs 14–16.
1855 Perna chilensis Conrad: 285, pl. 42, fig. 7 (as *Perna chiliana*).

1887 *Melina (Perna) Gaudichaudi* D’Orbigny: 200, pl. 45, figs 2, 3 (fig. 2 from d’Orbigny).
1887 *Melina pusilla* Philippi: 201, pl. 45, fig. 5.

TYPE MATERIAL. The two syntypes were found in the Gaudichaud Collection of the Laboratoire de Géologie at the MNHN in Paris. They are now housed in the Typothèque there under numbers MNHN Gg2002/121 and MNHN Gg2002/122.

TYPE LOCALITY. ‘... dans le grès tertiaire compacte des environs de Coquimbo, au nord du Chili’ [...in the compact Tertiary sand around Coquimbo, in northern Chile].

REMARKS. One of the syntypes, MNHN Gg2002/122 is the large specimen illustrated by d’Orbigny (1842: pl. 15, figs 14, 15). The figure is very stylised, as the shell ornamentation is not visible. Probably d’Orbigny assumed it was present, as is the case for many members of the group. The other specimen, MNHN Gg2002/121, is the figured fragment of hinge (d’Orbigny 1842: pl. 15, fig. 16).

According to Philippi (1887: 200) this species is found at Coquimbo (where Gaudichaud found it) and also at Guayacán and Caldera. He wondered whether Gaudichaud had been luckier than himself, with reference to the fact that he had found a complete specimen. However, the large specimen collected by Gaudichaud is an internal mould and the ornamentation is a stylisation by d’Orbigny. The species clearly belongs in *Isognomon* Lightfoot, 1786 (type species *Ostrea perna* Linnaeus, 1767). It is also found at the southern tip of Bahía Herradura de Mejillones (our unpublished data). ‘*Melina* pusilla’ Philippi, 1887 (p. 201, pl. 45, fig. 5) is a small specimen from Matanzas. According to Philippi it is not a juvenile of *Isognomon gaudichaudi*, but this needs confirmation. Matanzas is general Navidad age, i.e. late Miocene to early Pliocene (Finger et al. 2007), but Frassinetti & Covacevich (1993) noted that *Melina pusilla* was not found at Matanzas.

Perna chilensis Conrad, 1855, from the Miocene near Caldera is a junior synonym.

geminatus Sowerby, 1846 [Pecten]

Zygochlamys geminata (Sowerby, 1846) (Pl. 5, fig. 1)

v1846 Pecten geminatus Sowerby: 252, pl. 2, fig. 24.
v1907 Myochlamys geminata (Sow.); Ihering: 254–255.
?1985 Zygochlamys dominator n. sp.; Morra: 303–304, pl. 2, figs 1a–1b.
v1999 Zygochlamys geminatus (Sowerby, 1846) [sic]; Frassinetti & Covacevich: 24, pl. 3, figs 10–11, pl. 4, figs 2–4.
2004b Zygochlamys geminata; del Río: fig. 9.5.

TYPE MATERIAL. Holotype: NHM-L27695.

TYPE LOCALITY. ‘San Julian, Patagonia’. As pointed out by Morra (1985: 302), the exact locality is uncertain.

REMARKS. The holotype is a juvenile right valve. Morra (1985: 302) correctly pointed out that, as the exact locality and stratigraphical horizon from whence the holotype came are not clear, and many other species of *Zygochlamys* share the geminate ribs on young specimens, the name should be left in suspense. However, an adequate suite of specimens of all stages of other species of this genus confirms that the
species is valid, and Zygochlamys dominator Morra, 1985 (p. 303–304, pl. 2, figs 1a–b) is the adult stage. Sowerby’s illustration (Sowerby 1846: pl. 2, fig. 24) is fairly accurate, but does not show the costae as clearly arranged in pairs as in the specimen itself. It has eight pairs of costae plus one largish posterior one and two largish anterior ones, with one very fine secondary costa in each radial interspace in between the pairs. Therefore, Zygochlamys dominator is a junior synonym of Zygochlamys geminata. Peclen geminatus is the type species of Zygochlamys Ihering, 1907.

glabra Sowerby, 1846 [Nucula]

Scalpomactra glabra (Sowerby, 1846) (Pl. 5, fig. 2)

1846 Nucula ? glabra Sowerby: 251, pl. 2, fig. 18.

1897 Nucula ? glabra; Ihering: pl. 4, fig. 24. pl. 5, fig. 31.

2004b Pseudoportlandia glabra (Sowerby, 1846); del Río: fig. 12.6.

TYPE MATERIAL. Holotype: NHM-L27966.

TYPE LOCALITY. Santa Cruz, Argentina.

REMARKS. Sowerby’s figure is not a nuculid. The hinge of the only specimen is not shown, but all other characters agree well with a small species of *Scalpomactra* Finlay in Marwick, 1928 (type species *Mactra scalpellum* Reeve, 1854) very abundant in the Monte León Formation and collected by us at the type locality. The species is thus referred to *Scalpomactra*. The specimen described by Ihering (1897: 244, pl. 4, fig. 24 and pl. 5, fig. 31) as *Leda glabra* Sowerby is something entirely different, possibly close to *Pseudoportlandia* Woodring, 1925 (type species *Leda clara* Guppy, 1873). The specimen figured by del Río (2004b: fig. 12.6) as *Pseudoportlandia glabra* (Sowerby, 1846) also belongs to Ihering’s species and is not to that of Sowerby, confirming our supposed generic placement of that species.

hanetianus d’Orbigny, 1842 [Venus]

Retrotapes hanetianus (d’Orbigny, 1842) (Pl. 6, figs 1–6)

1969 Eurchomalea hanetiana (d’Orbigny); Herm: 127, pl. 12, figs 12–14.

TYPE MATERIAL. Apparently there were originally at least three syntypes. Two syntypes (both from Coquimbo) are in the Typothèque of the Laboratoire de Paléontologie, under numbers MNHN-R09523 (d’Orbigny Collection 10891) and MNHN-A13722 (d’Orbigny Collection 10891A), and both are unidentifiable internal moulds.

TYPE LOCALITY. ‘… dans les grès tertiaires à gros grains des environs de Coquimbo, au nord du Chili’ [In the coarse Tertiary sandstone from around Coquimbo, in northern Chile], collected by M. Hanet Clay.

REMARKS. In addition to the two syntypes housed in the Typothèque of the Laboratoire de Paléontologie, the only material associated with this name is in the d’Orbigny Collection, also in the Laboratoire de Paléontologie, in a bag labelled ‘manque 10891 et 10892’. The specimen itself is labelled ‘Venus hanetiana? D’Orb’. Coquimbo. Falunien B.

10891A’, and on the back of the label, ‘coll. D’Orbigny, 10891A’. This specimen is an internal mould, but is not the specimen figured by d’Orbigny (1842: pl. 13, figs 3, 4) nor the one he figured as *Venus incerta* (d’Orbigny 1842: pl. 13, figs 5, 6), although the question mark on the label suggests it may be a specimen of *incerta*. Herm (1969: 127, pl. 12, figs 12–14) described and illustrated material he referred to this species, synonymising *Venus hupeana* Philippi, 1887 (p. 132, pl. 26, fig. 1) with d’Orbigny’s taxon. He included it in *Eurchomalea* Cossmann, 1920 (type species *Venus rufa* Lamarck, 1818), but his material clearly belongs in *Retrotapes* del Río, 1997. Frassinetti (1974: 44) also synonymised these two species but did not state the criteria he used for doing so.

hanetianus d’Orbigny, 1842 [Solenocurtus]

‘Solenocurtus’ hanetianus d’Orbigny, 1842 (Pl. 5, figs 9–10)

1842 Solenocurtus Hanetianus d’Orbigny: 124–125, pl. 15, figs 1, 2.

1887 Psammobia Hanetiana (Solecurtus) D’Orb.; Philippi: 137, pl. 32, fig. 1.

TYPE MATERIAL. The type material of this species was not located in any of the Collections at the MNHN in Paris. It is presumably lost.

TYPE LOCALITY. ‘… au sein des grès tertiaires à gros grains de Coquimbo, au nord du Chili’ [… within the coarse grained Tertiary sands from Coquimbo, in northern Chile].

REMARKS. According to Philippi (1887: 137) this species cannot be included in *Solecurtus* [sic] as it has a shell closed at both ends. However, the figure shows an unidentifiable mould. The name must remain a nomen dubium.

insolita Sowerby, 1846 [Trigonocelia]

Limopsis insolita (Sowerby, 1846) (Pl. 7, figs 1–2)

1846 Trigonocelia insolita Sowerby: 252, pl. 2, figs 20, 21.

1902 Limopsis insolita (Sowerby); Ortmann: 91, pl. 25, fig. 6.

1998 Limopsis (Limopsis) insolita (Sowerby); del Río & Camacho: 76–77, pl. 1, figs 10–11.

1999 Limopsis insolita (Sowerby, 1846); Frassinetti & Covacevich: 20, pl. 2, fig. 20.

TYPE MATERIAL. Syntypes: NHM-L27963 (Santa Cruz), NHM-L27957, NHM-L27958 and NHM-L27959 (Santa Cruz).

TYPE LOCALITY. Santa Cruz, Patagonia.

REMARKS. The interior of syntype NHM-L27957 was illustrated by Sowerby (1846: pl. 2, fig. 20), while the figured exterior is that of the incomplete left valve on the slab numbered NHM-L27963 (Sowerby 1846: 252, pl. 2, fig. 21).

Del Río & Camacho (1998: 77) mentioned that ‘the holotype of this species consists of a left valve found by Darwin in the lowermost horizons of the Monte León Formation at the mouth of the Santa Cruz River’. They were obviously unaware that the two figures on Sowerby’s plate showed two different specimens. As the specimens illustrated are clearly different, their lectotype designation by inference
Plate 6 Figs 1–6 Retrotapes hanetianus (d’Orbigny, 1842). 1–3, Syntype MNHN-A13722 (height = 51 mm). 4–6, Syntype MNHN-R09523 (height = 60 mm).

of holotype is invalid (ICZN 1999: Art. 74.5). In any event, this is the only species of Limopsis in the Monte León Formation. Therefore, a lectotype designation appears, at present, unnecessary.

insulsa Hupé, 1854 [Venus]

Venus' insulsa Hupé, 1854 (Pl. 7, figs 5–7)

Hupé 1854 Venus insulsa Hupé: 343, pl. 6, fig. 10.

1887 Venus insulsa Hupé; Philippi: 111, pl. 57, fig. 6.

TYPE MATERIAL. The holotype is housed in the Typothèque of the Laboratoire de Géologie under number MNHN Gg2002/62.

TYPE LOCALITY. ‘Isla de Quiriquina’ [Quiriquina Island, Chile].

REMARKS. The exact locality from where the holotype comes is unknown. Therefore, the age is uncertain as rocks exposed in Quiriquina range in age from the Maastrichtian through to the Tertiary. The holotype is a closed shell and thus the interior is not available for study. This hampers any attempt at generic placement. Philippi (1887: 111, pl. 57, fig. 6) reported a specimen from Lebu, where the exposures are probably Eocene. However, its identity with Hupé’s species is uncertain.

laevigata Sowerby, 1846 [Corbis?]

Lahillia laevigata (Sowerby, 1846) (Pl. 7, figs 8–11)

Sowerby v1846 Corbis? laevigata Sowerby: 250, pl. 2, fig. 11.

1887 Fimbria (Corbis) laevigata Sow.; Philippi: 176, pl. 33, fig. 4 (from Sowerby).

1887 Amathusia angulata Philippi: 130, pl. 23, fig. 1, pl. 25, fig. 1.

1899a Theringia [sic] angulata (Phil.); Cossmann: 45 (err. pro Itheringia Cossmann, 1899 non Keyserling, 1891).

TYPE MATERIAL. Holotype: NHM-L27687 (Navidad).

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile.
REMARKS. The holotype is an articulated but extremely poor specimen, with only a little shell remaining around umbo and hingeline. Despite the poor state of preservation, it is clearly a senior synonym of *Amathusia angulata* Philippi, 1887. *Amathusia angulata* is the type species of *Lahillia* Cossmann, 1899, a replacement name for *Iheringia* Cossmann, 1899 (accidentally spelled *Theringia* in Cossmann 1899a as stated in Cossmann 1899b), not *Iheringia* Lahille, 1898 (also accidentally printed *Theringia*, in Lahille, 1899) nor *Iheringia* Keyserling, 1891. *Iheringia* Cossmann, 1899 itself is a replacement name for *Amathusia* Philippi, 1887, which was already three times occupied
(Cossmann, 1899a). Philippi (1887: 176) stated that he had not seen Sowerby’s shell. Nevertheless he included it in *Fimbria* Megerle von Mühlfeld, 1811 (type species *Fimbria magna* = *Venus fimbriata* Linnaeus, 1758), a genus belonging in an entirely different group.

Ostrea Sowerby, 1846

Ostrea maxima (Sowerby, 1846) (pp. 283, pl. 4, fig. 3) are based on juvenile specimens of *Crassostrea* *Ostrea rostrata* 1854 (p. 283, pl. 4, fig. 3) and of at least two of the specimens.

Ostrea Bénéckei, 1854

Ostrea transitoria (Hupé, 1854) (pp. 283, pl. 4, fig. 3) is a junior primary homonym of the Santa Cruz River was figured by del Río (2004b).

Ostrea Beneckei, 1854

Ostrea transitoria (Hupé, 1854) (Pl. 8, figs 1–3, Pl. 9, figs 1–3)

Ostrea rostrata Hupé, 1854

Ostrea rostrata Hupé, 1854 (type species *Ostrea maxima*).

Ostrea transitoria

Ostrea transitoria (Hupé, 1854) (Pl. 8, figs 1–3)

Ostrea Beneckei nov. sp.; Mörck: 574, pl. 13, fig. 1.

Ostrea transitoria Hup.; Mörck: 576.

Ostrea Beneckei nov. sp.; Mörck: 574, pl. 13, fig. 1.

Ostrea (Crassostrea) maxima Hupé; Herm: 113–114, pl. 6, figs 1–2.

Ostrea (Ostrea) transitoria Hupé; Herm: 113, pl. 7, figs 5–6.

Ostrea (Ostrea) longiuscula Hupé; Herm: 112–113, pl. 7, figs 2–4.

TYPE MATERIAL. Five syntypes are housed in the Hypothèque of the Laboratoire de Géologie (Catalogue 8P) under numbers MNHN-Gg2002/88 (four syntypes) and MNHN-Gg2002/89 (one syntype, 259 mm).

TYPE LOCALITY. ‘Formaciones Terciarias de Coquimbo’ [Tertiary formations of Coquimbo].

REMARKS. All five syntypes of *Ostrea maxima* are large adults of this species and in various states of preservation. The illustration of Hupé (1854: pl. 4, fig. 1) is a composite of at least two of the specimens. *Ostrea transitoria* Hupé, 1854 (p. 283, pl. 4, fig. 3) and *Ostrea rostrata* Hupé, 1854 (p. 283) are based on juvenile specimens of *Crassostrea maxima*, a fact that becomes evident after examining a large suite of specimens from the type locality near Coquimbo. Since the name *Ostrea maxima* is a junior primary homonym of *O. maxima* Linnaeus, 1758 (type species of *Pecten Müller*, 1776) and *O. transitoria* is the first available synonym, this latter name must be used for this species. As first revisers, we select the name *Crassostrea transitoria* as the one to be used for the species named *O. maxima*, *O. transitoria* and *O. rostrata* by Hupé (1854).

Crassostrea Sowerby, 1846

Crassostrea transitoria (Sowerby, 1846) (Pl. 8, fig. 4)

Crassatella Sowerby, 1846

Crassatella Lyelli Sowerby: 250, pl. 2, fig. 13.

Venus Sowerby, 1846

Venus discrepans Sowerby: 250, pl. 2, fig. 13.

Venus Sowerby, 1846

Venus exalbida Sowerby: 250, pl. 2, fig. 13.

Venus Sowerby, 1846

Venus multiradiatum Sowerby: 250, pl. 2, fig. 13.

Venus Sowerby, 1846

Venus meridionalis Sow.; Philippi: 115, pl. 15, fig. 5.

Venus Sowerby, 1846

Venus meridionalis Sow.; Ortmann: 124, pl. 27, fig. 1.

Venus Sowerby, 1846

Venus meridionalis Sow.; Ihering: 278.

Venus Sowerby, 1846

Venus meridionalis Sow.; Frassinetti: 48, fig. 8.

Venus Sowerby, 1846

Venus meridionalis Sow.; del Río: 120, pl. 3, figs 6–10.

Venus Sowerby, 1846

Venus cf. meridionalis (Sowerby, 1846); Frassinetti & Covacevich: 39, pl. 7, figs 7–8.

TYPE MATERIAL. Lectotype (designated herein): NHM-L27980 (Santa Cruz); paralectotypes: NHM-L27973 (Santa Cruz), NHM-L27981 (Santa Cruz), NHM-L27999 (Navidad). The status of the specimen from Navidad is uncertain and it is probably not conspecific with the three syntypes from Santa Cruz. Del Río (1994) apparently assumed that the illustrated specimen was the ‘holotype’, not being aware that Sowerby’s figure is a composite. Her statement is not valid as a lectotype designation (ICZN 1999: Art. 74.5). However, in order to stabilise the nomenclature of this species, we follow common usage and designate specimen NHM-L27980 as lectotype.

TYPE LOCALITY. Darwin stated Santa Cruz, Argentina and Navidad, Chile. Designation of syntype NHM-L27980 as lectotype restricts the type locality of this species to Santa Cruz.

REMARKS. Sowerby (1846) also noted Navidad as the locality, although remarking that the best specimens came from Santa Cruz. According to Philippi (1887), this species resembles more closely *Venus discrepans* Sowerby (living off the Chilean coast) than *Venus exalbida* Dillwyn, 1817 (= *Samarangia Retrotapes*), to which it had been compared by d’Orbigny (1852). Del Río (1994: 120) showed that it belongs in *Ameghinomya* Ihering, 1907 (type species *Venus volckmannii* var. *argentina* Ihering, 1897).

Cardium Sowerby, 1846

Trachycardium? multiradiatum (Sowerby, 1846) (Pl. 9, fig. 4)

Cardium Sowerby, 1846

Cardium multiradiatum Sowerby: 251, pl. 2, fig. 16.

Cardium Sowerby, 1846

Cardium multiradiatum Sow.; Philippi: 171, pl. 38, fig. 3.

TYPE MATERIAL. Holotype: NHM-L27965 (Navidad).

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile.

REMARKS. The holotype is a fairly large but highly incomplete – possibly posterior – half of a valve of generalised *Trachycardium* type.
Plate 8 Figs 1–3 Crassostrea transitoria (Hupé, 1854). Syntype of Ostrea maxima Hupé, 1854 MNHN-Gg2002/88-1 (maximum diameter = 216.7 mm).
Fig. 4 Ameghinomya meridionalis (Sowerby, 1846). Lectotype NHM-L27980 (height = 28.6 mm).
Figs 5–6 Chionopsis munsterii (d’Orbigny, 1842). Syntype MNHN-A13718 (height = 28 mm).
Fig. 7 Tellinella oblonga (Sowerby, 1846). Holotype NHM-L27961 (length of slab = 53.5 mm).
Figs 8–9 Neilo ornata (Sowerby, 1846). Lectotype NHM-L27974 (height = 21.1 mm).
Plate 9 Figs 1–3 Crassostrea transitoria (Hupé, 1854). 1, Syntype of Ostrea maxima Hupé, 1854 MNHN-Gg2002/89 (height = 259 mm). 2–3, Syntype of Ostrea Maxima MNHN-Gg2002/88–2 (height = 86 mm). Fig. 4 Trachycardium? multiradiatum (Sowerby, 1846). Holotype NHM-L27965 (height = 86.9 mm). Figs 5–8 Chesapecten patagonensis (d’Orbigny, 1842). 5–6, Syntype MNHN-Gg2002/110–1 (height = 36 mm). 7–8, Syntype MNHN-Gg2002/110–2 (height = 36.4 mm).
Philippi (1887) stated that he had available good specimens from Navidad and also from Curauma and Santa Cruz. The specimens from Santa Cruz are all external moulds, except for a small specimen probably belonging in *Hedecardium? puelchum* (Sowerby).

munsterii d’Orbigny, 1842 [Venus]

Chionopsis munsterii (d’Orbigny, 1842) (Pl. 8, figs 5–6)

v^1842* Venus Munsterius* d’Orbigny: 121–122, pl. 7, figs 10–11.

1852 *Cardium Munsterius*, d’Orb.; d’Orbigny: 120.

1879 *Venus pacheka* Philippi: 10, pl. 1, fig. 2.

1907 *Chione Muensteri* (Orb.); Ihering: 386.

1939 *Chione Münsteri*, d’Orb.; Wahlnish: 153, pl. 1, figs 3a–3b.

1967 [1966]* Chione münsteri* (d’Orbigny); Camacho: 83, pl. 12, fig. 10.

1991 *Chionopsis (Chionopsis) münsteri* (d’Orbigny); del Río: 69–70, pl. 4, fig. 6, text fig. 25.

1998b *Chionopsis (Chionopsis) munsterius* (d’Orbigny, 1842); del Río & Martínez Chiappara: 77, pl. 14, figs 8–9, pl. 20, figs 5–6, pl. 26, figs 2–3.

2002 *Chionopsis munsterii* (d’Orbigny, 1842); Martínez & del Río: fig. 12.9.

TYPE MATERIAL. Four syntypes are housed in the Typothèque of the Laboratoire de Paléontologie. These are numbered MNHN-A13718 (one shell and two internal moulds) and MNHN-A13719 (one shell, lectotype, designated herein), both from Bajada; one syntype numbered MNHN-A13720, labelled Santa Fé; one syntype numbered MNHN-A13721 from St. Joseph. Two additional syntypes are housed in the Typothèque of the Laboratoire de Géologie under numbers MNHN-Gg2005/5 and MNHN-Gg2005/6.

TYPE LOCALITY. ‘La Bajada, Entre Ríos; entre l’embouchure du Río Negro et Ensenada de Ros, Patagonie’ [La Bajada, Entre Ríos (nowadays the city of Paraná); between the mouth of the Río Negro and Ensenada de Ros, province of Río Negro].

REMARKS. D’Orbigny’s original figure seems to be a composite of two of the syntypes numbered MNHN-A13718 and MNHN-A13719 (the two that have been glued to a tablet), as shown by the size of fig. 11, but the anteroventral margin is broken and seems to have been completed on the figure from the other specimen. The other two syntypes, numbered MNHN-A13718, are two very poor moulds. Likewise, MNHN-A13720 is also a mould. Syntype MNHN-A13721 is a fairly good right valve of *Amechinomya meridionalis* from San José, on the Valdés peninsula. The specimen is glued to a tablet and labelled on the back ‘Chione meridionalis Sow., probablement de Santa Cruz, Patagonie. MSF, 1923’. Del Río (1991: text fig. 25) figured two un-numbered specimens from the d’Orbigny Collection (and therefore syntypes) from Bajada Grande. These could not be located by us in the collections. As more than one taxon is included in the type series, and in order to avoid further nomenclatural confusions, we designate syntype MNHN-A13719 as the lectotype. Thus, the remaining specimens become paratypes.

oblonga Sowerby, 1846 [Tellinides]

Tellinella oblonga (Sowerby, 1846) (Pl. 8, fig. 7)

v^1846 *Tellinides oblonga* Sowerby: 250, pl. 2, fig. 12. 1887 *Tellina oblonga* Sow.; Philippi: 135, pl. 22, fig. 7.

TYPE MATERIAL. Holotype: NHM-L27961.

TYPE LOCALITY. ‘Chiloé, eastern coast’. Darwin (1846) stated that his material came from Lemuy.

REMARKS. The only specimen is attached to the matrix and the hinge characters are unavailable. However, the elongate tellinid shape with an obvious left valve posterior flexure and strong comarginal ridges on the dorsal half of the anterior end suggest it may be a species of *Tellinella* Mörch, 1853 (type species, *Tellina virgata* Linnaeus, 1758). According to Sowerby (1846: 250), d’Orbigny believed this species was a *Solenella*, although he himself classed it as *Tellinides*.

ornata Sowerby, 1846 [Nuclea]

Nelio ornata Sowerby: 251, pl. 2, fig. 19.

1899 *Neilo ornata* Sow.; Ihering: 14.

1907 *Malletia ornata* Sow.; Ihering: 228.

1998 *Neilo (Neilo) ornata* Sowerby; del Río & Camacho: 65–67, pl. 2, figs 11–14; text fig. 7.

v^1999 *Neilo ornata* (Sowerby, 1846); Frassinetti & Covacevich: 16, pl. 2, figs 10–12.

TYPE LOCALITY. Port Desire (Puerto Deseado, Argentina).

REMARKS. Sowerby (p. 251) noted that ‘a fragment alone has been found’. However, in the collection there are two specimens: one of them is a fragment, but the other one (NHM-L27974) is the right valve figured by Sowerby (1846: pl. 2, fig. 19). This specimen is a broken right valve attached to the internal mould, and in which the anterior end is missing. It seems to have been repaired after being illustrated by Sowerby, as the crack is clearly visible, and all other features indicate it is obviously the same specimen. It remains unclear where the second fragment (NHM-L27975) comes from. The fact that Sowerby mentions ‘only a fragment’ may have led del Río & Camacho (1998) to believe it was the holotype, but there are in fact two syntypes. Del Río & Camacho (1998) stated that ‘the holotype is a broken right valve found in the lower fossiliferous strata that crop out at Puerto Deseado (Santa Cruz Province)’. It is not clear where they drew this conclusion from, as Darwin did not mention what beds his material came from. Nevertheless, it seems likely that they are right. The fossil beds exposed near Puerto Deseado (a few kilometres inland) are probably equivalent to the late Oligocene–early Miocene Monte León Formation. In any event, there was no way of knowing or inferring from the original description that there was more than one specimen and therefore their lectotype designation by inference of holotype is valid (ICZN 1999: Art. 74.6).
Plate 10 Figs 1–8 *Aequipecten paranensis* (d’Orbigny, 1842). 1–2, Syntype MNHN B33485 (height = 39 mm). 3–4, One of the syntypes MNHN R63973 (height = 36.3 mm). 5–6, One of the syntypes MNHN R63972 (height = 47.7 mm). 7–8, Syntype MNHN R63971 (height = 28 mm).

paranensis d’Orbigny, 1842 [*Pecten*]

Aequipecten paranensis (d’Orbigny, 1842) (Pl. 10, figs 1–8)

v*1842* *Pecten paranensis* d’Orbigny: 132–133, pl. 7, figs 5–9.

1846 *Pecten Paranensis* D’Orb.; Sowerby: 253, pl. 3, fig. 30.

1939 *Myochlamys paranensis* d’Orb.; Wahnish: 151, pl. 2, figs 2a–2b.

1967 *Chlamys paranensis* (d’Orbigny); Camacho: 66–67, pl. 9, fig. 11, pl. 10, fig. 2 (partim).

1988 *Aequipecten paranensis* (d’Orbigny); del Río: pl. 4, fig. 7.

1991 *Aequipecten paranensis* (d’Orbigny); del Río: 54–57, pl. 2, fig. 5, text-figs 17–18.

1992 *Aequipecten paranensis* (d’Orbigny); del Río: 32–37, pl. 7, figs 1–2, text-fig. 3a, 9–10, 14, 17:1, 19:1.

1998b *Aequipecten paranensis* paranensis (d’Orbigny, 1842); del Río & Martínez Chiappara: 58, pl. 5, figs 4–5, pl. 8, fig. 13, pl. 18, fig. 7, pl. 25, fig. 8.

2000 ‘*Aequipecten* paranensis’; del Río: fig. 10.1.

TYPE MATERIAL. Del Río (1991: 55, text-fig. 17) illustrated two specimens housed in the Typothèque of the Laboratoire de Paléontologie under numbers MNHN-B33485 (del Río 1991: text-figs 17a and 17b, an isolated right valve) and MNHN-R63971 (del Río 1991: text-fig. 17c, a closed shell). In the figure caption she stated that the specimen depicted in text-figs 17a and 17b is the ‘holotype’. However, such an action does not fulfill the requirements for a valid lectotype designation under the terms of Article 74.5 of the ICZN, as del Río herself figured a second specimen from the d’Orbigny Collection. Additional type material of this species in the Typothèque of the Laboratoire de Paléontologie consists of MNHN-R63972 (four valves) and MNHN-R63973 (16 valves). Five other syntypes are housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2005/7.

TYPE LOCALITY. ‘La Bajada, province d’Entre Ríos (république Argentine), a cent lieues au dessus de Buenos-Ayres’ (La Bajada, province of Entre Ríos (Argentine Republic), one hundred leagues above Buenos Aires). The type locality is most probably where the modern city of Paraná is built, an area that is nowadays completely urbanised.

REMARKS. This species was amply discussed by del Río (1991, 1992) and is one of the most common taxa in the late Miocene units of northern Patagonia and Entre Ríos. This species has been widely dealt with in the literature as it is one of the most common taxa in the Puerto Madryn and Paraná Formations.

patagonensis d’Orbigny, 1842 [*Pecten*]

Chesapecten patagonensis (d’Orbigny, 1842) (Pl. 9, figs 5–8)

v*1842* *Pecten patagonensis* d’Orbigny: 131–132, pl. 7, figs 1–4.

1852 *Pecten Patagonensis*, d’Orb.: d’Orbigny: 131.

1967 *Chlamys patagonensis* (d’Orbigny); Camacho: 67, pl. 10, figs 3–4.

1988 *Chesapecten crassus* n.sp.; del Río, pl. 3, figs 4a–4b (nomen nudum).
1992 *Chesapeken crassus* n.sp; del Rio: 45–48, pl. 8, figs 1–6, text-fig. 22.

Type Material. There are two syntypes in the Typothèque of the Laboratoire de Géologie under the Catalogue number MNHN-Gg2002/110.

Type Locality. ‘Grès verdâtre, Barranca del Sur, Río Negro’ (Green sands, southern cliffs of the Río Negro).

Remarks. The ribbing pattern of both syntypes shows that they are clearly juveniles of *Chesapeken crassus* del Rio (1992: 45–48, pl. 8, figs 1–6, text-fig. 22) and thus the name that should be used for this species is d’Orbigny’s.

patagonica d’Orbigny, 1842 [**Ostrea**]

Crasstossea patagonica (d’Orbigny, 1842) (Pl. 11, figs 1–2, Pl. 12, figs 1–4, Pl. 13, figs 1–3)

v*1842 Ostrea patagonica d’Orbigny: 133, pl. 7, figs 14–16.

1897 *Ostrea patagonica* d’Orb.; Ortmann: 356, fig. 4 (from d’Orbigny).

1901 *Ostrea patagonica* d’Orb.; Borchert: 17–19 (partim?).

?1939 *Ostrea patagonica* d’Orb.; Wahnish: 150, pl. 1, figs 1a–1b.

1998b *Ostrea patagonica* d’Orbigny, 1842; del Rio & Martinez Chiappara: 54–55, pl. 7, figs 5–6 (partim).

** TYPE MATERIAL.** Most syntypes are housed in the Typothèque of the Laboratoire de Géologie under the following numbers MNHN-Gg2002/108 (lectotype designated herein, a right valve, d’Orbigny Collection, Catalogue 3L-49); MNHN-Gg2002/109 (6 syntypes, 2 double valves and 4 left valves, d’Orbigny Collection, Catalogue 3L-50); MNHN-Gg2005/14 (4 syntypes, Bonpland Collection, Catalogue 6O-112/113); MNHN-Gg2005/8 (5 syntypes, Catalogue 7X-213/215); MNHN-Gg2005/9 (1 syntype, Catalogue 1080–7); MNHN-Gg2005/15 (syntype, the closed shell illustrated by d’Orbigny, 1842: pl. 7, fig. 15, 16); MNHN-Gg2005/10 (10 syntypes, Catalogue 3L-32). Since all have been available to d’Orbigny, they are all part of the type series. Two additional syntypes are housed in the Laboratoire de Paléontologie under number MNHN-A14086 (Catalogue Falunien B 11142).

Type Locality. ‘... dans les grès quartzes tertiaires de la Bajada, province d’Entre Ríos, république Argentine ... au sud du Río Negro, en Patagonie, près de l’Ensenada de Ros ... a Punta Gorda, à l’embouchure du Río Uruguay ... sur la côte de Patagonie, au port Saint Julien’ (...in the Tertiary quartz sands of la Bajada, province of Entre Ríos, Argentine Republic ...south of the Río Negro, in Patagonia, near Ensenada Ros ... at Punta Gorda, at the mouth of the Uruguay river ... along the coast of Patagonia, at port San Julián). The lectotype designated herein comes from the cliffs to the south of the mouth of the Río Negro.

Remarks. Two of the specimens in the Laboratoire de Paléontologie and two in the Laboratoire de Géologie are right valves of *Ostrea alvarezi* d’Orbigny. In order to prevent further confusion and fix the nomenclatural status of this species, the specimen illustrated in Plate 11, figs 1, 2 (i.e. MNHN-Gg2002/108) is designated lectotype herein. This right valve is preferred because the interior is available showing the strong chomata all around the shell margin. This feature easily distinguishes it from other superficially similar oysters from the Patagonian Cenozoic. Despite the great eco-morphic variation shown by this oyster, shell features such as the deep umbonal cavity in the left valve, the shape and position of the posterior adductor muscle scar and the diffuse radial ribs on the left valve (all similar to living representatives of *Crassotrea*), allow its inclusion in *Crassotrea* Sacco, 1897 (type species *Ostrea virginica* Gmelin, 1791).

patagonica Sowerby, 1846 [**Cardita**]

Fasciculicardia patagonica (Sowerby, 1846) (Pl. 13, figs 6–7)

v*1846 Cardita Patagonica* Sowerby: 251, pl. 2, fig. 17.

1887 *Cardita inaequalis* Philippi: 167, pl. 37, fig. 5.

v1902 *Cardita inaequalis* Philippi; Ortmann: 167, pl. 26, figs 7a–7d.

1907 *Venericardia patagonica* Sow.; Ihering: 283–284, pl. 10, figs 67a–67b.

1907 *Venericardia inaequalis* (Phil.); Ihering: 284.

1979 *Cardiocardita inaequalis* (Philipi, 1887); Malumián, et al.: 275, pl. 3, fig. 5.

TYPE MATERIAL. Syntype: NHM-L27955-6. The two numbers on the label suggest that at least a second syntype (but probably more) – now lost – was available to Sowerby.

TYPE Locality. Santa Cruz, Argentina.

Remarks. One of the most common carditids in the Patagonian Tertiary. The only specimen in the Sowerby Collection is a worn and broken left valve, while Sowerby’s figure shows a complete valve, a further indication that other syntypes existed in the collection. Our own collections from Santa Cruz confirm that this species belongs in *Fasciculicardia* Maxwell, 1969 (type species *Venericardia subintermedia* Suter, 1917), a subgenus of *Glycymeris* Stewart, 1930 according to Beu & Maxwell (1990: 218).

paytensis d’Orbigny, 1842 [**Pectunculus**]

Glycymeris ovata (Broderip, 1832) (Pl. 13, figs 4–5)

v*1832 Pectunculus ovatus* Broderip: 126.

1842 _Pectunculus paytensis_ d’Orbigny: 129, pl. 15, figs 11–13.

1843 _Pectunculus ovatus_; Reeve: Vol. 1 (Pectunculus), pl. 1, fig. 2.

1843 _Pectunculus intermedius_; Reeve, Vol. 1 (Pectunculus), pl. 1, fig. 1.

1896 _Pectunculus aff. intermedius_; Brod.; Mörlicke: 582, pl. 12, figs 3, 4.

1960 _Glycymeris ovatus_ (Broderip, 1832); Stuardo: 136, figs 1–6 (synonymy).

1961 _Glycymeris (Glycymeris) ovata_ (Broderip); Olson: 105, pl. 11, figs 6, 6a.

1969 _Glycymeris ovata_ (Broderip); Herm: 100, pl. 2, figs 3, 4.

1984 _Glycymeris (Glycymeris) ovata_ (Broderip, 1832); Frassineti & Covacevich: 114, figs 23, 37–40.

TYPE MATERIAL. There are four syntypes in the Typothèque of the Laboratoire de Paléontologie in the MNHN in Paris, under number MNHN-A13913.
Plate 11 Figs 1–2 *Crassostrea patagonica* (d’Orbigny, 1842). Syntype MNHN-Gg2002/108 (height = 172 mm).
Plate 12 Figs 1–4 *Crassostrea patagonica* (d'Orbigny, 1842). 1, 4, Syntype MNHN-Gg2002/109 (1 and 2 together) (length = 76.5 mm). 2–3, Syntype MNHN-Gg2002/109–2 (height = 128 mm).
TYPE LOCALITY. ‘... empâtée avec des moules dans un territoire à gros grains, qui couvre une partie de la côte de Payta, au nord du Pérou’ (... embedded with moulds in a coarse-grained Tertiary bed that covers part of the coast of Payta, in northern Peru).

REMARKS. All four syntypes are small, badly decorticated shells in which the ligament area can be seen. The ornamentation is largely missing, but what is left suggests very weak flat radial ribs. There is no articulated pair to match d’Orbigny’s plate 15, fig. 13, but it is clear that figs 11 and 12 are based on the largest two of the syntypes. The name Punctunculus paytensis apparently has been overlooked in all subsequent works, as it does not even appear in synonymy lists.

petitiana d’Orbigny, 1842 [Venus]
Chionopsis petitiana (d’Orbigny, 1842) (Pl. 14, figs 1–2, 5–7)

*1842 Venus Pettitiana d’Orbigny: 123–124, pl. 13, figs 9–11.
1854 Venus pulvinata Hupé: 343.
1887 Venus Pettitiana D’Orb.; Philippi: 121–122, pl. 15, fig. 5 (from d’Orbigny).
1887 Venus crassula Philippi: 122, pl. 15, fig. 3.
1887 Venus Remondi Philippi: 124, pl. 15, fig. 9.
1887 Venus pulvinata Hupé; Philippi: 131, pl. 16, fig. 4.
1887 Venus pinguis Philippi: 131, pl. 16, fig. 5.
1887 Venus spreta Philippi: 133, pl. 16, fig. 6.
1887 Venus serva Philippi: 133, pl. 16, fig. 1.
1967 Protodactyla petitiana (D’Orb.); Herm & Paskoff: 761. v1969 Chionopsis petitiana (d’Orbigny); Herm: 121–122, pl. 10, figs 5–10.

TYPE MATERIAL. The type series seems to have included at least three specimens, two of them illustrated by d’Orbigny on plate 13, figs 9–11, and a third specimen not figured. The latter is the only specimen remaining in the d’Orbigny Collection in the Laboratoire de Paléontologie, entered in the Falunien B Catalogue under number 10891. However, we must state that the number on this specimen’s label was added by someone else immediately next to the original legend ‘Venus, Coquimbo, Falunien B’. Therefore, it cannot be considered as part of the type series. A thorough search through the collections (both Paléontologie and Géologie) in the MNHN in Paris was unsuccessful in locating the illustrated type material. As remarked below, Herm (1969) identified the steinkern illustrated by d’Orbigny with the common species at Coquimbo, Tongoy and Horcón. According to Herm (1969: 122) the steinkerns are very abundant alongside other specimens in which the shell is preserved to different degrees. This allowed him to place this species in Chionopsis Olsson, 1932 (type species Venus amathusia Philippi, 1844). Although the name is commonly associated with the well preserved material from the Chilean localities, if the types (which are lost) remain the basis for this name, the situation can only lead to confusion, as there are many other venerid bivalves that are also represented by steinkerns coming from the same geological units as the original (and Herm’s) material. Therefore, in order to stabilise the name, we designate as neotype of Venus petitiana d’Orbigny, 1842, the specimen illustrated by Herm as Chionopsis petitiana (Herm 1969: pl. 10, fig. 5, Bayerische Staatssammlung für Geologie und Paläontologie BSP 1966 IV 49) coming from Quebrada Herradura, by the Pan American Highway, facies b.

TYPE LOCALITY. ‘... dans les grès tertiaires à gros grains de Coquimbo (Chili) et dans ceux de Payta (Pérou)’ (In the coarse Tertiary sandstones of Coquimbo (Chile) and in those from Payta (Peru)). The neotype comes from Quebrada Herradura, Coquimbo. Therefore this is the type locality for Chionopsis petitiana.

REMARKS. The specimen originally figured by d’Orbigny (1842: pl. 13, figs 9–11) was identified by Herm (1969: 121–122, pl. 10, figs 5–10) with material collected by him in Coquimbo, Tongoy and Horcón. Designation of a neotype for this species restricts the use of the name to material that can be clearly identified with it.

platense d’Orbigny, 1842 [Cardium]
Dinocardium platense (d’Orbigny, 1842) (Pl. 14, fig. 8)

*1842 Cardium platense d’Orbigny: 120, pl. 14, figs 12–14.
1893 Cardium Brevard Philippi: 10, pl. 1, fig. 11.
1901 Cardium magnum Born; Borchert: 34–35.
1994 Dinocardium novus n. sp.; del Río: 106–107, pl. 1, fig. 5.
2000 Dinocardium novus; del Río, fig. 11.9.

TYPE MATERIAL. A search through the collections at the MNHN in Paris was unsuccessful in locating the sole specimen that d’Orbigny illustrated. He probably had additional syntypes, but – as in the case of the illustrated one – none of them was found.

TYPE LOCALITY. ‘... au sein des terrains tertiaires de la Bajada, province d’Entre Ríos (Plata), sur les bords du Parana’ (... in the Tertiary beds of la Bajada, province of Entre Ríos (Plata), along the banks of the Paraná). Nowadays this is the city of Paraná, capital of the province of Entre Ríos, Argentina.

REMARKS. d’Orbigny (1842) mentioned the fact that this species is rarely found with its shell. This suggests that he had available more than one specimen. The material described more recently by del Río as Dinocardium novus (del Río 1994: 106–107, pl. 1, fig. 5) from Valdés Peninsula is very well preserved and generally with most of the shell. This group of bivalves is in need of revision in order to clarify its taxonomic relationships and nomenclature, but the species introduced by del Río seems to be a synonym of d’Orbigny’s large species, and the features she stated as differentiating the two taxa can be attributed to size and normal intraspecific variation.

propinquus Hupé, 1854 [Pecten]
Zygochlamys hupeanus (Philippi, 1887) (Pl. 14, fig. 4)

v1854 Pecten propinquus Hupé: 291, pl. 5, fig. 2 (junior primary homonym of Pecten propinquus Münster, 1833).
*1887 Pecten Hupeanus Philippi: 203, pl. 47, fig. 4.
1896 Pecten Hupeanus Phil.; Mörcke: 578, pl. 13, figs 2–4.
v1969 Chlamys hupeanus (Philippi); Herm: 104, pl. 1, figs 5–6.
Plate 14 Figs 1–2 Chionopsis petitiana (d’Orbigny, 1842). Neotype BSP 1966 IV 49 (height = 45.2 mm), Herm collection, München, Germany. Fig. 3 Hedecardium? puelchum (Sowerby, 1846). Syntypes NHM-L27968 (height = 38.1 mm). Fig. 4 Zygochlamys hupeanus (Philippi, 1887). Syntype of Pecten propinquus Hupé, 1854, MNHN-Gg2002/91 (height = 44 mm). Figs 5–7 Chionopsis petitiana (d’Orbigny, 1842). Syntype of Venus pulvinata MNHN-Gg2002/100 (height = 34.5 mm). Fig. 8 Dinocardium platense (d’Orbigny, 1842), from pl. 14, figs 12–14 of d’Orbigny.
?1997 *Chlamys* cf. *hupeanus* (Philippi, 1887); Frassinetti: 62, pl. 1, fig. 11.

TYPE MATERIAL. Two syntypes in the Typothèque of the Laboratoire de Géologie under catalogue number MNHN-Gg2002/91.

TYPE LOCALITY. ‘Altos de los Faluns de Coquimbo’ (Top of the cliffs at Coquimbo, Chile).

REMARKS. Philippi (1887: 203) introduced *Pecten hupeanus* clearly as a replacement name for Hupé’s species, as the name was preoccupied by *Pecten propinquus* Münster, 1833. He also stated (and figured in pl. 47, fig. 4) that he had one additional specimen that was left in the Museum by Gay. According to Philippi its preservation seems to have been very poor in comparison to Hupé’s original figured material, but Philippi was correct in identifying both species. Möricke (1895: 578, pl. 13, figs 2–4) described and figured material that he also correctly placed under *Pecten hupeanus* Philippi. Herm (1969: 103), who never saw Hupé’s type material, included *Pecten propinquus* (apparently only Hupé’s types) as a synonym of *Pecten vidali* Philippi, 1887. However, he also described *Pecten hupeanus* from Caldera and Coquimbo, stating that the holotype of *Pecten hupeanus* Philippi was in the ‘Museo Nacional de Historia Natural’ in Santiago, Chile. However, the specimen there is the one mentioned by Philippi and labelled *Pecten propinquus* and left behind by Gay. As *Pecten hupeanus* is clearly a replacement name for *Pecten propinquus* Hupé, the type material is the type material available to Hupé, and not Philippi’s additional specimens (ICZN 1999: Art. 72.7). In any event, Herm (1969: 106) compared *Pecten vidali* and *Pecten hupeanus* as closely related species, only separable by means of slight differences in the ornamentation. The shell outline and gminate ribs indicate this species belongs in *Zygochlamys* Ihering, 1907.

Puelchum Sowerby, 1846 [Cardium]

Hedecardium? puelchum (Sowerby, 1846) (Pl. 14, fig. 3)

v1846 *Cardium Puelchum* Sowerby: 607, pl. 2, fig. 15.
1902 *Cardium puelchum* Sowerby; Ortmann: 133, pl. 27, fig. 7.

v1999 *Trachycardium puelchum* (Sowerby, 1846); Frassinetti & Covacevich: 28, pl. 5, figs 9–10.

TYPE MATERIAL. Two syntypes: NHM-L27968 and NHM-L27969 (Santa Cruz).

TYPE LOCALITY. Santa Cruz, Argentina.

REMARKS. Sowerby’s figure is probably a composite of the two syntypes, showing the size and shape of the smaller and reasonably complete articulated internal mould NHM-L27968, and the faint sculptural remnant of the other, larger and incomplete mould of one valve MBNH-L27969, which is about one and a half times the size of the smaller specimen. Rib pattern suggests that this species fits better in *Hedecardium* Marwick, 1944 (type species *Cardium waitakiensis* Suter, 1907), than in *Trachycardium* Mörch, 1853b (type species *Cardium isocardia* Linnaeus, 1758), where it was placed by Frassinetti & Covacevich (1999).

Puelchum Sowerby, 1846 [Cardium]

Hedecardium? puelchum (Sowerby, 1846) (Pl. 14, fig. 3)

v1846 *Cardium Puelchum* Sowerby: 607, pl. 2, fig. 15.
1902 *Cardium puelchum* Sowerby; Ortmann: 133, pl. 27, fig. 7.

v1999 *Trachycardium puelchum* (Sowerby, 1846); Frassinetti & Covacevich: 28, pl. 5, figs 9–10.

TYPE MATERIAL. Two syntypes: NHM-L27968 and NHM-L27969 (Santa Cruz).

TYPE LOCALITY. Santa Cruz, Argentina.

REMARKS. Sowerby’s figure is probably a composite of the two syntypes, showing the size and shape of the smaller and reasonably complete articulated internal mould NHM-L27968, and the faint sculptural remnant of the other, larger and incomplete mould of one valve MBNH-L27969, which is about one and a half times the size of the smaller specimen. Rib pattern suggests that this species fits better in *Hedecardium* Marwick, 1944 (type species *Cardium waitakiensis* Suter, 1907), than in *Trachycardium* Mörch, 1853b (type species *Cardium isocardia* Linnaeus, 1758), where it was placed by Frassinetti & Covacevich (1999).

Puelchum Sowerby, 1846 [Cardium]

Hedecardium? puelchum (Sowerby, 1846) (Pl. 14, fig. 3)

v1846 *Cardium Puelchum* Sowerby: 607, pl. 2, fig. 15.
1902 *Cardium puelchum* Sowerby; Ortmann: 133, pl. 27, fig. 7.

v1999 *Trachycardium puelchum* (Sowerby, 1846); Frassinetti & Covacevich: 28, pl. 5, figs 9–10.

TYPE MATERIAL. Two syntypes: NHM-L27968 and NHM-L27969 (Santa Cruz).

TYPE LOCALITY. Santa Cruz, Argentina.

REMARKS. Sowerby’s figure is probably a composite of the two syntypes, showing the size and shape of the smaller and reasonably complete articulated internal mould NHM-L27968, and the faint sculptural remnant of the other, larger and incomplete mould of one valve MBNH-L27969, which is about one and a half times the size of the smaller specimen. Rib pattern suggests that this species fits better in *Hedecardium* Marwick, 1944 (type species *Cardium waitakiensis* Suter, 1907), than in *Trachycardium* Mörch, 1853b (type species *Cardium isocardia* Linnaeus, 1758), where it was placed by Frassinetti & Covacevich (1999).

Puelchum Sowerby, 1846 [Cardium]

Hedecardium? puelchum (Sowerby, 1846) (Pl. 14, fig. 3)

v1846 *Cardium Puelchum* Sowerby: 607, pl. 2, fig. 15.
1902 *Cardium puelchum* Sowerby; Ortmann: 133, pl. 27, fig. 7.

v1999 *Trachycardium puelchum* (Sowerby, 1846); Frassinetti & Covacevich: 28, pl. 5, figs 9–10.

TYPE MATERIAL. Two syntypes: NHM-L27968 and NHM-L27969 (Santa Cruz).

TYPE LOCALITY. Santa Cruz, Argentina.

REMARKS. Sowerby’s figure is probably a composite of the two syntypes, showing the size and shape of the smaller and reasonably complete articulated internal mould NHM-L27968, and the faint sculptural remnant of the other, larger and incomplete mould of one valve MBNH-L27969, which is about one and a half times the size of the smaller specimen. Rib pattern suggests that this species fits better in *Hedecardium* Marwick, 1944 (type species *Cardium waitakiensis* Suter, 1907), than in *Trachycardium* Mörch, 1853b (type species *Cardium isocardia* Linnaeus, 1758), where it was placed by Frassinetti & Covacevich (1999).
Plate 15 Figs 1–3 Amphidesma radula Hupé, 1854. Syntype MNHN-Gg2002/98 (height = 30 mm). Figs 4–6 Retrotapes rouaultii (Hupé, 1854). Holotype MNHN-Gg2002/53 (height = 48.8 mm). Figs 7–8 Argopecten purpuratus (Lamarck, 1819). Holotype of Pecten rudis Sowerby, 1846 NHM-L27688 (width = 60 mm). Figs 9–11 Mya? simplex (Hupé, 1854). Syntype MNHN-Gg2002/64 (height = 29 mm). Fig. 12 ‘Mya’ rugata (Sowerby, 1846), from pl. 2, fig. 8 of Sowerby.
reviSion of SoutH American tertiariM mollusc typ es

rugata Sowerby, 1846 [Maectra?]

'Mya' rugata (Sowerby, 1846) (Pl. 15, fig. 12)

*1846 Maectra ? rugata Sowerby: 249, pl. 2, fig. 8.
1887 Maectra rugata Saw.; Philippi: 413, pl. 32, fig. 6.
v1907 Panopea nucleus Ihering: 326–327, pl. 12, figs 85a–85b (non Ihering, 1899, p. 23, pl. 1, fig. 7).
? 1995 Mya (Arenomya) nucleoides (Wilckens); Chiesa et al.: 48, pl. 4, figs 5a-5b.
v1999 Panopea nucleus (Ihering, 1899); Frassinetti & Covacevich: 41, pl. 8, figs 2–4.

TYPE MATERIAL. The only original specimen, the holotype, was not located in the Darwin Collection at the NHM and is, presumably, lost (see below).

TYPE LOCALITY. Santa Cruz, Argentina.

REMARKS. This specific name has been used for material from Quiriquina as well as for other material coming from further south in Patagonia (Wilckens 1905; Wetzel 1960; Stinesbeek 1986). In all cases the material comes from sediments that are either late Cretaceous or Palaeocene in age. The thin shell and the narrow slit-like posterior gape seem to relate this species better to Mya than to Panopea, but a definite generic position can only be achieved with careful study of shell interiors.

subalbicans Hupé, 1854 [Venus]

Retrotales exalbidus (Dillwyn, 1817) (Pl. 16, figs 1–3)

Plate 16

Figs 1–3 Retrotapes exalbidus (Dillwyn, 1817). Syntype of Venus subalbicans Hupé, 1854 MNHN-Gg2002/58 (height = 56.5 mm).
Fig. 4 Tawera? sulculosa (Sowerby, 1846). Holotype NHM-L27964 (height = 18 mm).

Figs 5–6 Zygochlamys tenuicostatus (Hupé, 1854). Holotype MNHN-Gg2002/55 (height = 65 mm).

Figs 7–10 Cumingia variabilis (Hupé, 1854). Syntype MNHN-Gg2002/123–1 (height = 15 mm).

7, Hinge, detail of Fig. 10.

Fig. 11 Crassostrea transitoria (Hupé, 1854). Syntype MNHN-Gg2002/90–3 (height = 62 mm).
Hupe, 1854 [Dillwyn, 1817]. See also the comments under bidus. Both species were synonymised by S.W. Nielsen & Retrotapes exal-
C. V aldovinos (unpublished results) with Península Arauco, where it is very common.

sulculosa Sowerby, 1846 [Cytherea]
Tawera sulculosa (Sowerby, 1846) (Pl. 16, fig. 4)
v1846 Cytherea sulculosa Sowerby: 250, pl. 2, fig. 14.
? 1854 Venus gayi Hupé: 337, pl. 6, fig. 5.
1887 Venus (Cytherea?) sulculosa Sow.; Philippi: 122, pl. 14, fig. 3 (from Sowerby).
? 1969 Clausinella gayi (Hupé); Herm: 126, pl. 12, figs 7–8.

transitoria Hupé, 1854 [Ostrea]
Crassostrea transitoria (Hupé, 1854) (Pl. 16, fig. 11)
v1854 Ostrea transitoria Hupé: 283, pl. 4, fig. 3.
v1887 Ostrea rostrata Hupé: 283.
1896 Ostrea transitoria Hupé; Möricker: 576.
1896 Ostrea Benecki nov. sp.; Möricker: 574, pl. 13, fig. 1.
1896 Ostrea (Crassostrea) maxima Hupé; Herm 113–114, pl. 6, figs 1–2.
v1969 Ostrea (Ostrea) transitoria Hupé; Herm: 113, pl. 7, figs 5–6.

Variabilis Hupé, 1854 [Amphidesma]
Cummingia variabilis (Hupé, 1854) (Pl. 16, figs 7–10, Pl. 17, figs 1–3)
v1854 Amphidesma variabilis Hupé: 360, pl. 6, fig. 12.
1887 Semene variabilis (Amphidesma) Hupé; Philippi: 151, pl. 32, fig. 13 (from Hupé).
Plate 17

TYPE MATERIAL. There are three syntypes housed in the Laboratoire de Géologie at the MNHN under number MNHN-Gg2002/123.

TYPE LOCALITY. ‘Cerca de Cahuil, provincia de Colchagua’ (Near Cahuil, province of Colchagua, Chile i.e. Navidad).

REMARKS. Although placing it in Semele Schumacher, 1817 (type species Tellina proficua Pulteney, 1799), Philippi (1887: 151) stated that he felt inclined to place this species in Cumingia Sowerby, 1833 (type species Cumingia lamellata Sowerby, 1833), noting that it was possibly identical with his Cumingia antiqua Philippi (1887: 151, pl. 23, fig. 10).

villanovae Hupé, 1854 [Venus]

‘Venus’ villanovae’ Hupé, 1854 (Pl. 17, figs 4–6)

v1854 Venus Villanovae Hupé: 343.

1887 Venus Villanovae Hupé; Philippi: 125–126, pl. 18, fig. 7.

TYPE MATERIAL. The only specimen located in the collections in Paris is MNHN-Gg2002/97, which is considered to be the holotype as there is no indication that there was additional material available.

TYPE LOCALITY. ‘Terrenos Terciarios de Coquimbo’ (Tertiary beds of Coquimbo, Chile).

REMARKS. The holotype was not illustrated by Hupé and is a very poorly preserved internal mould in which no internal characters are visible and even the margins are broken off. Philippi’s identification of his material (Philippi 1887: 125–126, pl. 18, fig. 7) with this species rests on insufficient evidence. Many venerid-like bivalve steinkerns from the Chilean Tertiary around Coquimbo could be identified with it, so the name must remain a nomen dubium.

Gastropoda

affinis Hupé, 1854 [Turritella]

Incatella hupei Nielsen in DeVries, 2007 (Pl. 17, figs 7–8)

v1854 Turritella affinis Hupé: 155–156, pl. 2, fig. 7 (junior primary homonym of *T. affinis* Müller, 1851, p. 31, pl. 3, fig. 11).

v1887 Turritella affinis Hupé; Philippi: 72, pl. 9, fig. 31.

1896 Turritella affinis Hupé; Mörrice: 555, pl. 11, fig. 3.

1897 Turritella affinis Hupé; Philippi, pl. 10, fig. 2.

v2007 Incatella hupei Nielsen, new name; DeVries: 117, figs 3.12–3.17.

TYPE MATERIAL. There are 10 syntypes present in the d’Orbigny Collection at the Laboratoire de Géologie under number MNHN-Gg2002/49.

TYPE LOCALITY. ‘...capas del tuff calcario de Chiloé y de Cahuil, en la provincia de Colchagua’ (...calcareous tuff of Chiloé and from Cahuil, in the province of Colchagua, i.e. Chiloé and Navidad).

REMARKS. Hupé (1854), Philippi (1887) and Mörrice (1896) noted the close relation to the Recent Turritella cingulata Sowerby, 1825 (type species of *Incatella* DeVries, 2007) living along the Chilean coast. Mörrice (1896) described *Turritella cingulatiformis* as a Pliocene intermediate form between those two species (see Herm 1969). *Incatella hupei* is common in the Miocene sediments of Navidad, Arauco and Chiloé. DeVries (2007) erected the genus name *Incatella* for the species group leading to the Recent type species *Turritella cingulata*. *Turritella affinis* Hupé, 1854 is a junior primary homonym of *Turritella affinis* Müller, 1851.

alta Sowerby, 1846 [Voluta]

Adelomelon alta (Sowerby, 1846) (Pl. 18, figs 1–2)

v1846 Voluta alta Sowerby: 262, pl. 4, fig. 75.

1887 Voluta alta Sow.; Philippi: 65, pl. 7, fig. 6 (from Sowerby).

v2007 Adelomelon alta (Sowerby, 1846); Nielsen & Frassinetti: 93, figs 9.1, 9.2.

TYPE MATERIAL. Sowerby (1846: 262) stated that he had a single specimen from Navidad, which would be the holotype, and ‘two casts apparently belonging to this species, but considered by M. d’Orbigny as different’ from Santa Cruz, which would not have type status. In the NHM only one specimen remains (NHM-G25287) labelled as Santa Cruz, agreeing only very vaguely with the figure. A neotype (SGO.PI.6274) was designated by Nielsen & Frassinetti (2007) within a review of the Chilean Neogene volutes.

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile.

REMARKS. Sowerby (1846: 262) stated that ‘there is only one specimen of this remarkable shell, of which the anterior part is so imperfect, that no part of the inner lip or of the canal is to be seen’. From this statement it can be concluded that this specimen would be the holotype from Navidad. It is evident that Sowerby had doubts about the ‘two casts apparently belonging to this species, but considered by M. d’Orbigny as different’ from Santa Cruz. Following ICZN Article 72.4.1 the latter specimens are therefore not part of the type series. The remaining specimen from Santa Cruz (see del Río & Martínez, 2006: figs 14.5 and 14.6) has been used for the aperture in the composite figure given by Sowerby (1846: pl. 4, fig. 75) but the figured spire is that of the lost holotype.

ambigua d’Orbigny, 1842 [Bulla]

Bulla subambigua d’Orbigny, 1852 (Pl. 17, figs 9–10)

v1842 Bulla ambigua d’Orbigny: 113, pl. 12, figs 1–3 (junior primary homonym of *B. ambigua* Gmelin, 1791).

1852 Bulla subambigua d’Orb., 1847; d’Orbigny: 96 (nomen novum).

1887 Bulla ambigua D’Orb.; Philippi: 103, pl. 13, figs 1a–1b.

TYPE MATERIAL. The holotype is housed in the Typothèque of the Laboratoire de Paléontologie under catalogue number MNHN-R63174.

TYPE LOCALITY. ‘...aux environs de Coquimbo (Chili), dans un grès compacte gris, à gros grains’ (...around Coquimbo (Chile), within a compact, gray and coarse-grained sand).

REMARKS. The holotype is a very poor internal mould. Without further material with shell preserved, generic assignment can only be tentative. Due to general shell shape and a thickened columellar base this species is still regarded as belonging to *Bulla* Linnaeus, 1758 (type species *Bulla amputa* Linnaeus, 1758). The sediment is very atypical for the
Plate 18 Figs 1–2 Adelomelon alta (Sowerby, 1846). 1, Neotype SGO.Pl.6274 (height = 195 mm). 2, Non-type specimen NHM-G25287 (height 195 mm). Fig. 3 Turritella ambulacrum Sowerby, 1846. Syntype NHM-G26359–63 (height = 28.2 mm).
is known to occur from the Late Plio–Pleistocene near Coquimbo. It seems that d’Orbigny’s material comes from an unknown locality of uncertain – presumably Miocene – age.

ambiguus Sowerby, 1846 [Monoceros]

Acanthina unicornis (Bruguère, 1789) (Pl. 17, figs 13–14)

*1789 Buccinum unicorn Bruguère: 254.
1816 Monoceros crassilabrum Lamarck: pl. 396, figs 2a, b.
1835 Monoceros acuminata Sowerby: 50.
1835 Monoceros cirrum Sowerby: 51.
1835 Monoceros costatum Sowerby: 50.
1835 Monoceros globulus Sowerby: 50.
1839 Monoceros uncinor; Gray: 124.

v1846 Monoceros ambiguus Sowerby: 261, pl. 4, figs 66–67.

1852 Monoceros ambiguus Sowerby in Darw., 1846; d’Orbigny: 79.

v1854 Monoceros ambiguus Sowerby; Hupé: 194.

v1887 Monoceros crassilabris Brug.; Philippi: 56, pl. 6, fig. 6.

v1887 Monoceros ambiguus Sow.; Philippi: 56, pl. 7, fig. 1.

1951 Nucella (Acanthina) crassilabrum; Carcelles & Williamson: 291.

1954 Nucella (Acanthina) crassilabrum (Lam.): Carcelles: 257, pl. 1, figs 1–4.

v1969 Nucella (Acanthina) crassilabrum crassilabrum (Lamarck); Herm: 138, pl. 17, figs 4a, b, 6a, b.

v1969 Nucella (Acanthina) crassilabrum calcar (Martyn); Herm: 139, pl. 17, figs 7–9.

v1969 Nucella (Acanthina) crassilabrum acuminata (Sowerby); Herm: 140, pl. 17, figs 5a, b.

1971 Acanthina crassilabrum (Lamarck, 1816); Dell: 210.

1985 Acanthina monodon crassilabrum (Lamarck, 1789); Wu: 58, figs 15–17, 23, 35–37, 50–51, 59, 71.

2003 Acanthina unicornis (Bruguère, 1789); DeVries: 334, figs 8–22.

TYPE MATERIAL. Holotype: NHM-G26378 (Coquimbo).

TYPE LOCALITY. Coquimbo, ?Pliocene.

REMARKS. DeVries (2003) distinguished two Recent species, *Acanthina monodon* (Pallas, 1774) and *Acanthina unicornis* – into which the holotype of *Monoceros ambiguus* falls – and provided a detailed description and discussion. *Acanthina unicornis* is known to occur from the Late Pliocene to Recent of southern Peru to southern Chile (DeVries 2003).

ambulacrum Sowerby, 1846 [Turritella]

‘Turritella’ ambulacrum Sowerby, 1846 (Pl. 18, fig. 3)

v1846 Turritella ambulacrum Sowerby: 257, pl. 3, fig. 59.

?1999 Turritella ambulacrum Sowerby, 1846; Frassinetti & Covacevich: 45, pl. 9, fig. 8.

TYPE MATERIAL. Five syntypes (not individually numbered): NHM-G26359, NHM-G26360, NHM-G26361, NHM-G26362 and NHM-G26363 (Santa Cruz).

TYPE LOCALITY. All five syntypes are labelled ‘Santa Cruz, Patagonia’. However, Sowerby (1846: 257) stated Santa Cruz and Port San Julián, Patagonia as the localities. As he mentioned Santa Cruz in the first instance, the figured specimen is probably from there. Most probably it is the reddish specimen present in the lot of syntypes, as the aperture agrees fairly well (see Plate 18, fig 3). This specimen, however, consists of only five whorls and the three additional early whorls in the figure are reconstructed.

REMARKS. Sowerby also mentioned San Julián as a locality for this species (the figured specimen is presumably from Santa Cruz), but it remains unclear from what horizon it comes. South American turritellids are badly in need of revision, so the generic placement – while certainly not *Turritella* s.s. – must remain uncertain at present. The other species described by Sowerby from Chile, *Turritella suturalis* (= *T. pseudosuturalis* d’Orbigny, 1852), seems to be distinct.

antiquata d’Orbigny, 1842 [Chilina]

Chilina antiquata d’Orbigny, 1842

1842 Chilina antiquata d’Orbigny: 114.

1852 Chilina antiqua d’Orb., 1847; d’Orbigny: 27.

TYPE MATERIAL. Syntypes could not be located in the collections of the MHNH in Paris and they are probably lost.

TYPE LOCALITY. ‘... aux Barrancas al Sur, rive droite du Río Negro’ (... At Barrancas al Sur, left bank of the Río Negro).

REMARKS. These shells were neither described nor illustrated by d’Orbigny, because of the poor material he had available. He was sure, though, that they belonged in *Chilina*. The name must remain a nomen nudum. Parodiz (1969) noted that ‘this species was never figured (…) and apparently it has not been collected since d’Orbigny’.

armatum Hupé, 1854 [Triton]

Sassia armata (Hupé, 1854) (Pl. 17, figs 11–12)

v1854 Triton armatum Hupé: 182–183, pl. 3, fig. 1.

v1887 Tritonium verruculosum Sow.; Philippi: 53 (partim), pl. 4, fig. 10.

v1887 Tritonium exiguum Philippi: 54, pl. 3, fig. 23 (partim).

v1979 Tritonium verruculosum Sow.; Tauber: 90, pl. 19, fig. 67 (non Sowerby, 1846).

v2007 Sassia armata (Hupé); Finger et al.: fig. 12F.

TYPE MATERIAL. The holotype is present in the Typothèque of the Laboratoire de Géologie under catalogue number MHNH-Gg2001/21.

TYPE LOCALITY. ‘Terrenos terciarios de Coquimbo’ (Tertiary beds of Coquimbo). The collection catalogue also states ‘Port de Coquimbo’ as locality. *Sassia armata* is not known from the Pliocene/Pleistocene deposits around Coquimbo. It is, however, fairly frequent in the Navidad Formation. The type locality must therefore remain doubtful.

REMARKS. *Sassia armata* has been regarded as a synonym of *Ameranella verruculosa* (Sowerby, 1846) by many authors (e.g. Philippi 1887). However, the two species are quite distinct. Both species will be reviewed by A. G. Beu, who pointed out to us that this species must be placed in *Sassia*.

blainvillei d’Orbigny, 1842 [Monoceros]

Chorus blainvillei (d’Orbigny, 1842) (Pl. 19, figs 1–3)

v1842 Monoceros blainvillei d’Orbigny: 116–117.

v1842 Monoceros Blainvillii d’Orbigny, pl. 6, figs 18, 19.
Plate 19 Figs 1–3 Chorus blainvillei (d’Orbigny, 1842). 1–2, Syntype 1 MNHN-R63175 (height = 66 mm). 3, Syntype 2 MNHN-R63175 (height = 57.5 mm). Figs 4–10 Testallium cepa (Sowerby, 1846). 4–6, Holotype NHM-G26339 (height = 57 mm). 7, 10, Holotype of Fusus labialis Hupé, 1854 MNHN-Gg2002/71 (height = 79.8 mm). 8–9, Syntype of Fusus opimus Hupé, 1854 MNHN-Gg2002/70 (height 58.3 mm).

v1887 *Monoceros Blainvillii* D’Orb.; Philippi: 58, pl. 5, figs 2, 3.

1896 *Monoceros Blainvillii* d’Orb. var. nodosus Mör.; Möricke: 563.

v1969 *Chorus blainvillii blainvillii* (d’Orb.); Herm: 133, pl. 15, figs 1a, 1b.

v1969 *Chorus blainvillii nodosa* (Möricke); Herm: 133, pl. 16, figs 1, 2.

1997a *Chorus blainvillii* (d’Orbigny, 1842); DeVries: 137, pl. 2, fig. 5, pl. 3, figs 5–7.

TYPE MATERIAL. Two syntypes are present in the Typothèque of the Laboratoire de Paléontologie under number MNHN-R63175.

TYPE LOCALITY. ‘J’ignore d’où elle vient. Elle m’a été donnée en Bolivie, comme des côtes du Pérou. Peut-être se trouve-t-elle à Payta’ (I don’t know where it comes from. It has been given to me in Bolivia as coming from Peru. Maybe it comes from Paita). ‘Probably Quebrada Cardo Grande, probably Quebrada Cardo Grande. ’I don’t know where it comes from. It has been given to me in Bolivia as coming from Peru. Maybe it comes from Paita’ (I don’t know where it comes from. It has been given to me in Bolivia as coming from Peru. Maybe it comes from Paita).’ (d’Orbigny, 1842); DeVries: 115, figs 3.8.

REMARKS. The genus *Chorus* Gray, 1847 (type species *Monoceros giganteus* Lesson, 1830), including this species, has been revised by DeVries (1997a), who gave a late Pliocene to earliest Pleistocene age for this species.

cepa Sowerby, 1846 [Gastridium] Testallium cepa (Sowerby, 1846) (pl. 19, figs 4–10)

v1846 Gastridium Cepa Sowerby: 261, pl. 4, figs 68, 69.

1852 Monoceros cea d’Orb.; Philippi: 79.

v1854 Monoceros labiale Hupé: 199–200, pl. 3, fig. 3 (as *Fusus*).

v1854 Monoceros opimus Hupé: 200, pl. 2, fig. 6 (as *Fusus*).

1887 Monoceros labialis Hup.; Philippi: 58, pl. 5, fig. 1.

v1887 Gastridium cepa Sow.; Philippi: 59–60, pl. 6, fig. 2.

1887 Gastridium opimus (Hup.); Philippi: 60, pl. 57, fig. 7.

1897 Chorus aff. C. blainvilli (d’Orbigny, 1842); Fleming in Watters & Fleming: 398, pl. 20, figs 21, 22.

1897 Testallium cepa (Sowerby, 1846); Vermeij & DeVries: 25–26, fig. 1.

v2003 Testallium cepa (Sowerby, 1846); Nielsen & Frassinetti: 95, figs 24–6, 9, 12, 15, 17, 18, 20.

v2007 Testallium cepa (Sowerby); Finger et al.: fig. 12K.

TYPE MATERIAL. Holotype of Gastridium cepa, NHM-G26339 (Navidad); holotype of Fusus labialis, MNHN-Gg2002/71 (Topocalma); three syntypes of Fusus opimus MNHN-Gg2005/11 (Topocalma); one syntype of Fusus opimus, MNHN-Gg2002/70 (Topocalma).

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile.

REMARKS. This is the type species of *Testallium* Vermeij & DeVries, 1997. The taxonomic status and affinities of this species have been discussed by Vermeij & DeVries (1997) and the synonymy with *Fusus labialis* and *Fusus opimus* was confirmed by Nielsen & Frassinetti (2003) based on the type material. The specimen of Fleming (in Watters & Fleming 1972) has also been examined and synonymy is confirmed.

chilensis Sowerby, 1846 [Turritella] Incatella chilensis (Sowerby, 1846) (pl. 20, figs 1–2)

v1846 Turritella Chilensis Sowerby: 257, pl. 4, fig. 51.

1852 Turritella chilensis Sowerby in Darw., 1846; d’Orbigny: 33.

v1887 Turritella chilensis Sow.; Philippi: 72, pl. 9, fig. 6.

1985 Turritella chilensis Sow.; Taverna et al.: pl. 2, figs 8, 9.

v2000 Turritella chilensis Sowerby, 1846; Frassinetti: 134, pl. 1, figs 1–3.

2007 Incatella chilensis (Sowerby, 1846); DeVries: 115, fig. 3.8.

TYPE MATERIAL. Three pieces of matrix with several syntypes: NHM-G26418, NHM-G26419, NHM-G26420 (Isla Mocha).

TYPE LOCALITY. Isla Mocha, late Miocene?, Central Chile.

REMARKS. *Incatella chilensis* is intermediate between *I. affinis* (Hupé, 1854) (= *I. hupei* Nielsen in DeVries, 2007) and *I. cingulariformis* (Möricke, 1896). This species lineage was recently reviewed and redescribed by DeVries (2007) who, on the grounds of better and more material, was able to distinguish the involved species satisfactorily.

chiloensis Hupé, 1854 [Oliva] Oliva chiloensis Hupé, 1854 (pl. 20, figs 3–4)

v1854 Oliva chiloensis Hupé: 218.

TYPE MATERIAL. Two syntypes housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/51.

TYPE LOCALITY. ‘Cerca de Cucao’ (Near Cucao, Chiloé).

REMARKS. Hupé did not formally describe this species, because of the poor preservation of the material. However, he did state its difference with *Oliva simplex* in having a proportionally shorter spire (‘... parece vecina de nuestra *O. simplex*; pero ofrece en las proporciones de su espina más corta diferencias bien apreciables’), so this name is available. *Oliva chiloensis* is probably ancestral to the Pliocene–Recent Chilean *Oliva peruviana* Lamarck, 1811 which is much larger. *Oliva chiloensis* has also been found at Ranquil on Arauco Peninsula (our unpublished data).

clathratus Hupé, 1854 [Fusus] Aeneator? cleryanus (d’Orbigny, 1842) (pl. 20, figs 5–9)

v1854 Fusus clathratus Hupé: 174, pl. 2, fig. 9 (junior primary homonym of *F. clathratus* Deshayes, 1835).

1887 Fusus Hupéanus Philippi: 48, pl. 2, fig. 18 (from Hupé) (nomen novum).

TYPE MATERIAL. One syntype of *Fusus clathratus* in the Typothèque of the Laboratoire de Géologie, under number MNHN-Gg2002/68. In the catalogue accompanying the collection (Catalogue 8P number 196 – Topocalma) there are three syntypes recorded but only one is present.
TYPE LOCALITY. ‘Terrenos terciarios de Cahuil, provincia de Colchagua’ (Tertiary of Cahuil, province of Colchagua, i.e. Navidad).

REMARKS. The only remaining syntype agrees well with *Fusus cleryanus*, of which it is considered a synonym (see entry under *cleryanus* d’Orbigny, 1842 [*Fusus*], below).

cleryanus d’Orbigny, 1842 [*Fusus*]

Aeneator? cleryanus (d’Orbigny, 1842) (Pl. 20, figs 5–9)

v1842 *Fusus cleryanus* d’Orbigny: 117, pl. 12, figs 6–9.

v1854 *Fusus clathratus* Hupé: 174, pl. 2, fig. 9 (junior primary homonym of *F. clathratus* Deshayes, 1835).

v1887 *Fusus Cleryan* d’Orb.; Philippi: 42, pl. 2, fig. 12.

1887 *Fusus Hupeanus* Philippi: 48, pl. 2, fig. 18 (from Hupé) (*nomen novum*).

TYPE MATERIAL. Two syntypes of *Fusus cleryanus* in the ‘Typothèque de l’Institut National d’Études Paléontologique’, both figured: MNHN-R09521 is here designated as the lectotype; MNHN-R09522 becomes a paralectotype.

TYPE LOCALITY. ‘... dans les grès tertiaires à gros grains des environs de Coquimbo (Chili)’ (in the coarse grained sands around Coquimbo (Chile)). The sediment is hard grey-brown calcareous sandstone and does not belong to the Plio–Pleistocene sediments exposed in that region. Since the type material of *Fusus clathratus* is supposed to come from the Navidad Formation, the age is considered as Miocene.

REMARKS. The only syntype of *Fusus clathratus* agrees well with the lectotype of *Fusus cleryanus*. The paralectotype of *Fusus cleryanus* is an internal mould and not even referable to a family. *Fusus hupeanus* has been introduced by Philippi (1887) as a replacement name for *Fusus clathratus* Hupé, 1854 because that name is preoccupied by *Fusus clathratus* Deshayes, 1835. Through synonymisation of Hupé’s species with *Fusus cleryanus*, Philippi’s name also becomes a synonym. Because of general shell shape and ornamentation this species is tentatively referred to the genus *Aeneator* Finlay, 1926 (type species *Verconella marshalli* Murdoch, 1924).

collaris Sowerby, 1846 [*Trochus*]

Valdesia collaris (Sowerby, 1846) (Pl. 20, figs 10–11)

v1846 *Trochus collaris* Sowerby: 256, pl. 3, figs 44, 45.

v1902 *Gibbula laevis* (Sowerby); Ortmann: 170, pl. 31, fig. 8.

v1897 *Valdesia (Julia) collaris* (Sow.); Morra & del Rio: 87, pl. 2, figs 3a-c.

v1999 *Trochus laevis* Sowerby, 1846; Frassinetti & Covacevich: 45, pl. 9, figs 5–9.

TYPE LOCALITY. Santa Cruz, Argentina and Navidad, Chile. However, the remaining syntype is from Santa Cruz so – as this one is the designated lectotype – the type locality is restricted to Santa Cruz.

REMARKS. The first species referable to *Valdesia* described from the Patagonian Tertiary was *Trochus collaris* Sowerby, 1846 (p. 613, pl. 3, figs 44–45). This species was reported by Sowerby from Navidad and Santa Cruz. The specimen (NHM-G26937) he figured in pl. 3, fig. 45 reads Navidad on the label. However, according to handwriting on the original label by Martin Doello Jurado it comes from Santa Cruz, a locality also confirmed on the same label by W. J. Zinsmeister. We agree with the opinion that this specimen comes from Santa Cruz and not from Navidad. Sowerby’s specimen from Navidad seems lost and appears to have been a juvenile of *Astele chilensis*, as already suspected by Sowerby himself who believed it might have been a juvenile stage of *Trochus laevis*, which he collected only in Navidad (Chile). Philippi (1887) agreed with Sowerby on this issue and synonymised the two species, which were later placed under *Gibbula* by Taver (1979). However, the shells from Navidad and Santa Cruz are, in fact, quite different and can not be placed under the same specific name. The specimens from Santa Cruz have an almost smooth shell with only a row of faint tubercles immediately below the suture and very faint spiral cords on the early teleoconch whors. The periphery of the shell is bicarinate, visible as such only on the last whorl. The base has about 10 spiral cords, of which the three or four nearest to the umbilicus are the strongest. Furthermore, the whors in *Astele chilensis* (= *Trochus laevis* Sow.) are more weakly inflated than in *Valdesia collaris*. Until all the fossil materials of these species are better known, it is preferable to use *Valdesia collaris* for the material from Santa Cruz and *Astele chilensis* for the material from Navidad.

cosmophila Sowerby, 1846 [*Bulla*]

Kaitoa cosmophila (Sowerby, 1846) (Pl. 20, figs 12–13)

v1846 *Bulla cosmophila* (Sowerby): 254, pl. 3, fig. 35.

v1995 *Scaphander* cf. *cosmophilus* (Sowerby, 1846); Frassinetti & Covacevich: 64, pl. 2, figs 17, 18.

v2000 *Scaphander cosmophilus* (Sowerby, 1846); Frassinetti: 148, pl. 2, figs 19–21.
Type Material. Holotype NHM-G26345.

Type Locality. Huao Island (= Guao), Chile. The locality is generally accepted to be Pliocene in age (e.g. Frassinetti 2000).

Remarks. This species is referable to Kaitoa Marwick, 1931 (type species *Scaphander (Kaitoa) haroldi* Marwick, 1931), with fine spiral sculpture all over the shell. The shape of the shell is slightly more cylindrical than the very oval, *Scaphander*-like shell shown in the figure. This, together with the fine spiral sculpture all over the shell surface, suggests it fits better in *Kaitoa* than in *Scaphander* s.s. as suggested by Frassinetti & Covacevich (1995) and Frassinetti (2000). Frassinetti (2000) reported this species from Isla Guao, Isla Guambiln and Tubul (Arauco), all these localities are regarded as early to late Pliocene in age. Whether the Recent Chilean *Scaphander interruptus* Dall, 1890 is closely related must be left open to an evaluation of a larger suite of material.

costellata Sowerby, 1846 [Terebra] Zeacuminia costellata (Sowerby, 1846) (Pl. 20, figs 14–15)

v 1846 Terebra costellata Sowerby: 262, pl. 4, figs 70, 71.

v 1887 Terebra costellata Sow.; Philippi: 63, pl. 7, fig. 3.

Type Material. Holotype: NHM-G26343, a fragment.

Type Locality. Navidad, Navidad Formation, Miocene, Central Chile.

Remarks. This species resembles small species of *Zeacuminia* Finlay, 1930 (type species *Zeacuminia tahua* Finlay, 1930) from New Zealand, with a weak subsutural groove (at ca. four-fifths whorl height on spire) and quite prominent, narrow axial costae below that; the aperture of the holotype is incomplete and the spire apex missing but we have collected complete specimens from Navidad.

dimmidiata Sowerby, 1846 [Oliva] Lamprodomina dimmidiata (Sowerby, 1846) (Pl. 20, figs 16–17)

v 1846 Oliva dimmidiata Sowerby: 263, pl. 4, figs 76, 77.

v 1854 Oliva simplex Hupè: 217, pl. 3, fig. 9.

v 1887 Oliva dimmidiata Sow.; Philippi: 69, pl. 8, fig. 14.

v 1887 Oliva pusilla Philippi: 69, pl. 8, fig. 15.

v 1897 Oliva dimmidiata Sow.; Philippi: pl. 10, fig. 3.

v 1972 Lamprodomina dimmidiata (Sowerby, 1846); Fleming in Watters & Fleming: 399, figs 6k, 6v.

v 1979 Oliva dimmidiata Sowerby, 1846; Tavera: 90, pl. 16, fig. 42.

v 2007 Lamprodomina dimmidiata (Sowerby); Finger et al.: fig. 12H.

Type Material. Five syntypes and 2–3 fragments: NHM-G26352, NHM-G26353, NHM-G26354, NHM-G26355 and NHM-G26356 (Navidad).

Type Locality. Navidad, Navidad Formation, Miocene, Central Chile.

Remarks. *Lamprodomina dimmidiata* is the only member of the genus apart from the type species *L. neoazelanica* (Hutton, 1885) from the middle Miocene to Pliocene of New Zealand. It is well known from Navidad to Stokes Island, Chonos Archipelago, and usually very abundant where it occurs. *Lamprodomina dimmidiata* is very similar to *L. neoazelanica*, which is larger and more strongly shouldered.

discors Sowerby, 1846 [Pleurotoma] Gemmula (Psychysyrinx) pseudodiscors (d’Orbigny, 1852) (Pl. 20, figs 18–21)

v 1846 Pleurotoma discors Sowerby: 258, pl. 4, fig. 54 (junior primary homonym of *P. discors* Sowerby, 1834 and *P. discors* Philippi, 1844).

1852 Pleurotoma pseudo-discors d’Orb., 1847; d’Orbigny: 65 (nomen novum).

v 1979 Pleurotoma santacruzensis; Tavera: 89, pl. 18, fig. 55 (non Ihering, 1907).

v 1992 Psychysyrinx sp. nov.; Shuto: pl. 1, figs 4, 5.

v 2000 Gemmula sp. 2; Frassinetti: 147.

Type Material. Two syntypes are present in the Darwin Collection: NHM-G26403 (Plate 20, figs 20–21) and G26404 (Plate 20, figs 18–19). However, these do not belong to the same species. G26404 is here selected as lectotype to clearly identify this species.

Type Locality. Navidad, Navidad Formation, Miocene, Central Chile.

Remarks. This species is assigned to *Psychysyrinx* Thiele, 1925 (type species *Pleurotoma (Subulata) bisinuata* von Martens, 1901) — a subgenus of *Gemmula* Weinkauff, 1875 (type species *Pleurotoma gemmata* Reeve, 1843 (non Conrad, 1835) = *Gemmula hindsiana* Berry, 1958) because of its sculptural features, which resemble very much the Recent Chilean *G. (Psychysyrinx) chilensis* Berry (1968), the only Recent eastern Pacific species of this subgenus. *Gemmula (Psychysyrinx) pseudodiscors* is similar to some species of *Comitas* Finlay, 1926 (type species *Drilia fusiformis* Hutton, 1877) but we prefer to maintain this species in *Psychysyrinx* until sinus position and protoconch are known from well preserved specimens.

distans Sowerby, 1846 [Pyruila] Ficus distans (Sowerby, 1846) (Pl. 20, fig. 23)

v 1846 Pyrla distans Sowerby: 259–260, pl. 4, fig. 61.

v 1887 Ficula distans (Pyrla) Sow.; Philippi: 49, pl. 4, fig. 1.

v 1980 Ficus distans (Sowerby, 1846); Covacevich & Frassinetti: 289–291, figs 3–5, 10.

v 1993 Ficus (Ficus) distans (Sowerby); Covacevich & Frassinetti, fig. 9.

v 1997b Ficus distans (Sowerby, 1846); DeVries: 12, figs 3d, 3e.

Type Material. Three syntypes: NHM-G26334–6, all said to come from Navidad. However, G26336, a mould, belongs to another species and the sediment indicates that it also comes from a different locality. Probably it is a ‘*Ficus carolina* d’Orbigny, 1847’ from Patagonia. To clarify the identity of this species, G26334 is here designated as the lectotype.

Type Locality. Navidad, Navidad Formation, Miocene, Central Chile.
EMARKS. *Ficus distans* is a well known species and the reader is referred to Covacevich & Frassinetti (1980).

echinulata Hupé, 1854 [*Pleurotoma*]

Austrotoma echinulata (Hupé, 1854) (Pl. 20, figs 24–27)

v1846 *Pleurotoma turbinelloides* Sowerby: 258, pl. 4, fig. 53 (junior primary homonym of *P. turbinelloides* Reeve, 1846).

v*1854* *Fusus echinulatus* Hupé: 173, pl. 2, fig. 3.

v1887 *Fusus turbinelloides* (Pleurotoma) Sow.; Philippi: 44, pl. 2, fig. 17.

1896 *Fusus turbinelloides* Sow.; Möricke: 570–571, pl. 11, figs 6, 7.

v2001 *Austrofusus turbinelloides* (Sowerby, 1846); Frassinetti: 81.

TYPE MATERIAL. The holotype of *Fusus turbinelloides* is specimen NHM-G26398. The holotype of *Fusus echinulatus* is housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/69 (Topocalma).

TYPE LOCALITY. Sowerby stated Navidad as the locality for this species. Hupé's specimen comes from the ‘terrenos terciarios de Cahuil (Colchagua)’ (Tertiary of Cahuil (Colchagua)). In both cases the material comes from the Miocene Navidad Formation.

REMARKS. This is a fairly typical, short-spired, coarsely sculptured *Austrotoma*. *Austrotoma echinulata* is similar to *Austrotoma echinata* Powell, 1942 but has a much stronger upper row of tubercles. As the work of Reeve (1846) was published in April and Darwin’s (1846) – including the appendix by Sowerby – only in September, the next available name for this species is *Fusus echinulatus* Hupé, 1854, which is clearly a synonym.

elegans Hupé, 1854 [*Sigaretus*]

Sinum subglobosum (Sowerby, 1846) (see Pl. 23, figs 22–23)

v1854 *Sigaretus elegans* Hupé: 226, pl. 1, fig. 5 (junior primary homonym of *Sigaretus elegans* Blainville, 1827).

TYPE MATERIAL. Holotype of *Sigaretus elegans* housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/79 (Topocalma).

TYPE LOCALITY. ‘Terrenos terciarios de la provincia de Colchagua, cerca de Topocalma’ (Tertiary of the province of Colchagua, near Topocalma). Navidad, Navidad Formation, Miocene, Central Chile.

REMARKS. See remarks under *Sinum subglobosum* which is the senior synonym for this species.

gaudichaudi d’Orbigny, 1842 [*Rostellaria*]

Ectinochilus? gaudichaudi (d'Orbigny, 1842) (see Pl. 22, figs 16–17)

1842 *Rostellaria gaudichaudi* d’Orbigny: 116, pl. 14, figs 6–8.

1928 *Ectinochilus gaudichaudi* d’Orbigny; Olsson: 71, pl. 16, figs 3, 4, 6, 7.

2004 *Ectinochilus gaudichaudi* (d’Orbigny, 1842); DeVries: 438, fig. 9.

TYPE MATERIAL. A thorough search through the collections in Paris did not reveal any possible type material. The type material must therefore be considered lost.

TYPE LOCALITY. ‘à Payta, dans un grès tertiaire jaune-vertâtre, friable’ (At Payta, in a greenish-yellow, friable Tertiary sand) Payta, Peru.

REMARKS. This species is known from late Eocene sediments of northern Peru (Olsson 1928) and southern Peru (DeVries 2004). Since the siphonal canal has never been observed completely preserved, the generic assignment remains tentative (DeVries 2004).

gregarea Sowerby, 1846 [*Crepidula*]

Crepidula gregaria Sowerby, 1846 (Pl. 20, fig. 22)

v*1846* *Crepidula gregarea* Sowerby: 254, pl. 3, fig. 34.

1977 *Crepidula gregaria* Sowerby; Hoagland: 379 (emended to gregaria).

TYPE MATERIAL. The figured specimen, NHM-L27699 includes six stacked syntypes. In addition, three formerly stacked specimens are syntypes NHM-L27700. The figured specimens are much less complete than in Sowerby’s (1846: pl. 3, fig. 34) original illustration.

TYPE LOCALITY. Santa Cruz, Patagonia.

REMARKS. Sowerby used the name *gregarea* in the text but *gregaria* in his figure. Hoagland (1977: 379) selected *gregaria* as the correct spelling for the name.

This species may be different to the one from Navidad referred to by Philippi (1887: 88, pl. 12, fig. 1).

kieneri Hupé, 1854 [*Concholepas*]

Concholepas kieneri Hupé, 1854 (Pl. 21, figs 1–3)

v*1854* *Concholepas Kieneri* Hupé: 203, pl. 3, figs 4, 4a.

v1969 *Concholepas nodosa* (Möricke); Herm, pl. 18, fig. 3 not of Möricke, 1896.

1995 *Concholepas kieneri* Hupé, 1854; DeVries: 286, figs 5, 10, 12, 13–16, 21, 22, 25.

2000 *Concholepas kieneri* Hupé, 1854; DeVries, figs 7, 12.

TYPE MATERIAL. Two syntypes housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/86.

TYPE LOCALITY. ‘Terrenos terciarios de Coquimbo’ (Tertiary beds of Coquimbo, Chile).

REMARKS. *Concholepas kieneri* comes from Pliocene deposits near Coquimbo and has been sufficiently described and discussed by DeVries (1995, 2000). He also reported specimens from the Miocene and Pliocene of Peru (DeVries 1995). At that time, no information was available on the type material which was subsequently rediscovered and is figured here as photos for the first time.
Plate 21 Figs 1–3 Concholepas kieneri Hupé, 1854. 1–2, Syntype MNHN-Gg2002/86 (height = 51.6 mm). 3, Syntype MNHN-Gg2002/86 (height = 55 mm). Figs 4–6 Astele chilensis (d’Orbigny, 1852). Holotype NHM-G26393 (diameter = 47 mm). Figs 7–8. Inquisitor lingulacaninus new name. Neotype of Pleurotoma lanceolata (Hupé, 1854) SGO.PI.6280 (height = 27.5 mm). Figs 9–14 Sassia leucostomoides (Sowerby, 1846). 9–10, Paratype NHM-G26365 (height = 22.7 mm). 11–12, Lectotype NHM-G26337 (height = 26 mm). 13–14, Paratype NHM-G26338 (height = 18.7 mm). Figs 15–20 Echinophoria monilifera (Sowerby, 1846). 15–16, Holotype NHM-G26364 (height = 37.7 mm). 17–18, Syntype 2 of Cassidaria tuberculifera Hupé, 1854 MNHN-Gg2002/52 (height = 47.7 mm). 19–20, Syntype 1 of Cassidaria tuberculifera Hupé, 1854 MNHN-Gg2002/52 (height = 41.3 mm).
labiale Hupé, 1854 [Monoceros]

Testellium ceca (Sowerby, 1846) (Pl. 19, figs 7, 10)

v1854 Monoceros labiale Hupé: 199–200, pl. 3, figs 3, 3a (as Fusus labialis).

TYPE MATERIAL. Holotype of Monoceros labiale housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/71.

TYPE LOCALITY. ‘Topocalma y Cahuil, provincia de Colchagua, en las capas del terreno terciario’ (Topocalma and Cahuil, province of Colchagua, in the Tertiary beds). The catalogue lists only one specimen from Topocalma.

REMARKS. See entry herein under ceca Sowerby, 1846 [Gastridiium], a senior synonym of this species.

laevis Sowerby, 1846 [Trochus]

Astele chilensis (d’Orbigny, 1852) (Pl. 21, figs 4–6)

1846 Trochus collaris Sowerby: 256, from Navidad non Santa Cruz.

v1852 Trochus chilensis d’Orb., 1847; d’Orbigny: 44 (nom. novum).

v1887 Trochus laevis Sow.; Philippi: 95, pl. 12, fig. 5.

v1887 Trochus frickii Philippi: 95–96, pl. 12, fig. 7.

v1979 ‘Trochos’ (Gibbula) laevis Sow.; Tavera: 94.

v2004 Astele chilensis (d’Orbigny, 1852); Nielsen et al.: 84, 86, figs 60–69.

v2007 Astele chilensis (d’Orbigny); Finger et al.: fig. 12J.

TYPE MATERIAL. Holotype of Trochus laevis: NHM-G26393 (Navidad); two syntypes of Trochus fricki SGO.PL.810 (Lebu), SGO.PL.813 (Navidad).

TYPE LOCALITY. Navidad. The locality Lebu of Philippi (1887) is somewhat unclear but most probably refers to Caleta Ranquil, Peninsula Arauco. This species is quite frequent at both localities.

REMARKS. The name Trochus laevis is preoccupied several times and had been replaced by d’Orbigny (1852). That name, however, had been overlooked by all subsequent workers and was reintroduced by Nielsen et al. (2004). D’Orbigny also had one specimen in his collection, which is still present there under number 10292 and is labeled Trochus chilensis. Nielsen et al. (2004) discussed this species in detail and showed that it belongs in the Calliostomatidae.

lanceolata Hupé, 1854 [Pleurotoma]

Inquisitor lingulacaninus new name (Pl. 21, figs 7–8)

*v1854 Pleurotoma lanceolata Hupé: 177, pl. 3, fig. 7 (junior primary homonym of P. lanceolata Reeve, 1845 (in 1843–1846) and P. lanceolata Michelotti, 1846).

1887 ?Pleurotoma lanceolata Hupé; Philippi: 35, pl. 1, fig. 11.

TYPE MATERIAL. After a thorough search, the type material has not been located in the collection of Gay/Hupé in Paris. A single Pleurotoma appears in the catalogue for the collection (8P-195) but only the accompanying sediment sample (8P-194), a tuff from Topocalma, is present. The specimen reported by Philippi (1887) from Curauma could not be located in the SGO.PI. There appears to have been some confusion regarding the type locality for this species. While Hupé stated Coquimbo as locality for his specimen, according to Catalogue 8P-195 the specimen (now considered lost) comes from Navidad, which is consistent with the content of sample 8P-195 – a ‘tuff’ from Navidad. Furthermore, no similar species occurs in Coquimbo (Philippi 1887: 38; our unpublished results) but there is a species in the Navidad Formation at Navidad that agrees perfectly well with the original description and illustration. In order to objectively clarify the taxonomic status of this species, as well as the exact location of the type locality, we designate as neotype specimen, SGO.PI.6280, from the reddish sandstones at Punta Perro. This is a specimen that is 27.5 mm high, which, in all characters, agrees with the original description and illustration of Hupé.

TYPE LOCALITY. ‘Coquimbo, en las capas terciarias’ [Coquimbo, in the Tertiary beds (Chile)]. According to our neotype designation, the type locality should be redefined as the sandstone cliffs immediately south of Punta Perro, belonging to the Navidad Formation (locality PPN: Nielsen et al. 2004) and was dated by Finger et al. (2007) as late Miocene to early Pliocene.

REMARKS. Describing species is not the aim of this paper, so this species will be redefined elsewhere based on the neotype designated here and more than 100 additional specimens from the Navidad Formation. Inquisitor lingulacaninus is quite different from the only other species from the Chilean Tertiary referable to Inquisitor, i.e. Fusus ischnos Philippi, 1887 so confusion is unlikely. Pleurotoma lanceolata Hupé, 1854 is a junior primary homonym of Pleurotoma lanceolata Reeve, 1845 (in 1843–1846) and Pleurotoma lanceolata Michelotti, 1846. The proposed replacement name Inquisitor lingulacaninus is composed of Lingula caninus (latin) = headland of the dog, the literal translation of Punta Perro, where this species was found by us and which is the refined type locality.

leucostomoides Sowerby, 1846 [Triton]

Sassia leucostomoides (Sowerby, 1846) (Pl. 21, figs 9–14)

v1846 Triton leucostomoides Sowerby: 260, pl. 4, fig. 64.

v2000 Sassia leucostomoides (Sowerby, 1846); Frassinetti: 136, pl. 1, figs 11–14.

TYPE MATERIAL. Three syntypes: NHM-G26337, NHM-G26338 (smallest syntype, Sowerby’s pl. 4, fig. 64), NHM-G26365 (all Isla Guafo). According to A.G. Beu (pers. comm.) NHM-G26338 is a juvenile Fusitriton, not identifiable to species. To fix the status of this species we select NHM-G26337, a typical Sassia leucostomoides, as the lectotype.

TYPE LOCALITY. Isla Guafo, Pliocene, southern Chile.

REMARKS. Frassinetti (2000) cited quite a large suite of specimens present in the Museo Nacional de Historia Natural, Santiago, Chile, from the type locality. However, the matrix in the syntypes is hard sandstone, while Frassinetti’s specimens come from mudstone. One paralectotype
(NHM-G26338) has a large protoconch of about 4.2 slightly eroded whorls that show traces of spiral threads; the diameter and the height of the protoconch is 2.6 mm in each direction. Frassinetti’s (2000) specimens have protoconchs of about 3.5–4 whorls, which seems to reflect intraspecific variation.

monilifer Sowerby, 1846 [Cassis]

Echinophoria monilifera (Sowerby, 1846) (Pl. 21, figs 15–20)

v1846 *Cassis monilifer* Sowerby: 260–261, pl. 4, fig. 65.

v1887 *Cassis monilifera* Sow.; Philippini: 64, pl. 8, fig. 1 non fig. 2 (nom. emend.)

1968 *Phalium* (Xenophalium) *moniliferum* (Sowerby, 1846); Abbott: 32.

1985 *Cassis monilifera* Hupé; Tavera et al.: pl. 2, fig. 19.

?2000 *Semicassis aff. monilifera* (Sowerby, 1846); Frassinetti: 136, pl. 1, fig. 10.

v2001 *Semicassis monilifera* (Sowerby, 1846); Frassinetti: 80–81.

v2007 *Echinophoria monilifera* (Sowerby); Finger et al.: fig. 12M.

TYPE MATERIAL. Holotype of *Cassis monilifer*: NHM-G26364 (Navidad); two syntypes of *Cassidaria tuberculifera* are housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/52.

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile. Hupé (1854: 209) gave Coquimbo as the type locality for *Cassidaria tuberculifera*, but in the catalogue to the collection and on the label the locality is given as Cucaco. This is consistent with our own collections from Coquimbo (yielding no cassids) and Cucaco (common occurrence of this species).

REMARKS. The specimen figured as *Cassidaria tuberculifera* by Philippini (1887: pl. 8, fig. 2) does not belong in this species. The species name is correctly spelled *monilifera*.

noachinus Sowerby, 1846 [Fusus]

'Fusus' noachinus (Sowerby, 1846) (Pl. 22, figs 1–4)

v1846 *Fusus Noachinus* Sowerby: 259, pl. 4, figs 58–59.

TYPE MATERIAL. Two syntypes: NHM-G26400; NHM-G26401.

TYPE LOCALITY. Port San Julián, Patagonia.

REMARKS. This common species of Muricidae seems close to *Chorus giganteum*. However, its placement in *Chorus* is inadequate as the type specimens are lacking the characteristic labral tooth of this genus. It may belong in a new, as yet undescribed, genus of muricids common in Oligocene and Miocene rocks from southern South America.

opimum Hupé, 1854 [Monoceros]

Testallium cepa (Sowerby, 1846) (Pl. 19, figs 8–9)

v1854 *Monoceros opimum* Hupé: 200, pl. 2, figs 6, 6a (as *Fusus opimus*).

TYPE MATERIAL. One syntype of *Monoceros opimum* is housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/70; three syntypes of *Monoceros opimum* under number MNHN-Gg2005/11.

TYPE LOCALITY. ‘Terrenos terciarios de Cahuil, provincia de Colchagua’ [Tertiary of Cahuil, province of Colchagua].

REMARKS. See entry herein under *cepa* Sowerby, 1846 [Gastridium], a senior synonym of this species.

orbignyi Hupé, 1854 [Fusus]

'Fusus' orbignyi Hupé, 1854 (Pl. 22, figs 5–6)

v1854 *Fusus orbignyi* Hupé: 175.

TYPE MATERIAL. Holotype housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/72.

TYPE LOCALITY. ‘Cerca de Cahuil’ [Near Cahuil, Chile]. Navidad, Navidad Formation, Miocene, Central Chile. Hupé published Cahuil as the locality but noted Topocalma in the catalogue; Topocalma is a locality near Navidad.

REMARKS. No material apart from the holotype is known. Assignment to a better fitting genus is not possible at the moment because more material is needed, including specimens with a preserved outer lip. After publishing the plates, Hupé noted that *Fusus orbignyi* was preoccupied by *F. sulcatus* Lamarck, 1816 and therefore renamed this species in the later appearing text.

orbignyi Hupé, 1854 [Natica]

Magnatica subsolida (d’Orbigny, 1852) (Pl. 22, figs 7–8)

TYPE MATERIAL. The holotype is present in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/73 (Topocalma, height = 44 mm).

TYPE LOCALITY. ‘Terrenos terciarios cerca de Topocalma, en la provincia de Colchagua’ [Tertiary beds near Topocalma, in the province of Colchagua, Chile].

REMARKS. The holotype is a poorly preserved specimen that shows the two umbilical grooves mentioned by Hupé. A large suite of naticids from Navidad (collections in SGO.PI and ours) confirms it as a subjective synonym of *Natica solida* Sowerby, 1846 (= *N. subsolida* d’Orbigny, 1852). See entry under *solida* Sowerby, 1846 [Natica] herein for further comments.

ornata Sowerby, 1846 [Struthiolaria]

Perissodonta ornata (Sowerby, 1846) (Pl. 22, fig. 9)

v1846 *Struthiolaria ornata* Sowerby: 250, pl. 4, fig. 62.

TYPE MATERIAL. Syntype: NHM-G26392 (Santa Cruz).

TYPE LOCALITY. Santa Cruz and San Julián, Patagonia.

REMARKS. It appears that Sowerby (1846) had a variety of specimens from different localities, but the figured specimen seems to be from Santa Cruz, as suggested by the label in the NHM; the specimen, however, is missing from the Darwin Collection. This is in contradiction to Camacho & Zinsmeister’s (1989: 105) statement that the ‘holotype’ was
Plate 22 Figs 1–4 'Fusus' noachinus Sowerby, 1846. 1–2, Syntype NHM-G26401 (height = 63.7 mm). 3–4, Syntype NHM-G26400 (height = 52.5 mm). Figs 5–6 'Fusus' orbignyi Hupé, 1854. Holotype MNHN-Gg2002/72 (height = 30.9 mm). Figs 7–8 Magnatica subsolida (d'Orbigny, 1852). Holotype of Natica orbignyi Hupé, 1854 MNHN-Gg2002/73 (height = 44 mm). Fig. 9 Perissodonta ornata (Sowerby, 1846). Cast of syntype NHM-G26392 (height = 20 mm). Figs 10–11 Neverita (Glossaulax) pachystoma (Hupé, 1854). Syntype MNHN-Gg2002/77 (height = 32 mm). Figs 12–13 Turritella patagonica Sowerby, 1846. Syntypes NHM-G26408 (height = 31.8 mm). Figs 14–15 Trophon sowerbyi Griffin & Pastorino, 2005. Syntype of Fusus patagonicus Sowerby, 1846 NHM-G26415 (height = 69 mm). Figs 16–17 Ectinochilus? gaudichaudi (d'Orbigny, 1842), from pl. 14, fig. 7 of d'Orbigny.
an internal mold from the San Julián Formation at Cabo Curioso. No indication is given as to how they reached such a conclusion, but statements in the original publication by Sowerby leave no doubt about the existence of syntypes, rendering such a ‘designation of lectotype by inference of holotype’ invalid (ICZN 1999: Art. 74.5). In fact, Sowerby himself stated in the original description that ‘casts of a large variety are found in a loose clayey sandstone at Port San Julian’, a statement that clearly indicates that the species (i.e., the ‘typical’ specimens) came from the Monte León Formation, which is also exposed around Port San Julián. However, a similar species also occurs in the San Julián Formation.

Thus, the main complication that clouds the identity of this taxon is the fact that the species from Santa Cruz (probably, although impossible to confirm as the material is missing in the Darwin Collection) – occurring there and at other localities including San Julián but always within the Monte León Formation – is different from the one common in the San Julián Formation. A lectotype designation would be necessary in order to unequivocally identify them both. Unfortunately, the specimen in the NHM is a very poorly preserved internal mould, which is very difficult to assign to either of the two species. Thus, an application to the ICZN (Art. 75.5) would be necessary in order to set that specimen aside and designate a neotype from the Monte León Formation, of which numerous well preserved specimens are available.

Cenozoic South American struthiolariids have been generally placed in the genus \textit{Struthiolarella} Steinmann & Wilckens, 1908 (type species: \textit{Struthiolaria ameghinorum} Hering, 1897). However, we follow Powell (1951) and Nielsen (2005) in regarding \textit{Struthiolarella} as a synonym of \textit{Perissodonta} Martens, 1878 (type species \textit{Struthiolaria mirabilis} Smith, 1875).

\textbf{\emph{pachystoma} Hupé, 1854 \textit{[Natica]}}

\textit{Neverita (Glossaulax) pachystoma} (Hupé, 1854) (Pl. 22, figs 10–11)

\begin{itemize}
 \item v1854 \textit{Natica pachystoma} Hupé: 223, pl. 1, figs 6, 6a.
 \item v1887 \textit{Natica pachystoma} Hupé: Philippi: 82, pl. 10, figs 1a–c.
 \item v1979 ‘\textit{Natica}’ (Polinices) \textit{pachystoma} Hupé; Tavera: 93, figs 51–52.
\end{itemize}

\textbf{TYPE MATERIAL.} Eight syntypes are housed in the Type Collection. In order to fix the status of this species we designated a neotype from the Monte León Formation, of which numerous well preserved specimens are available.

\textbf{TYPE LOCALITY.} ‘En los terrenos terciarios, cerca de Topocalma, en la provincia de Colchagua’. [In the Tertiary near Topocalma, in the province of Colchagua]. The type locality, therefore, would be the Navidad Formation at Topocalma, south of Navidad.

\textbf{REMARKS.} Having the typical callus depression, this species clearly belongs in \textit{Glossaulax} Pilsbry, 1929. Several nominal species from Chile might fall in synonymy with \textit{Natica pachystoma}. However, it is not yet clear wheather it is one highly variable species (like the type species of \textit{Glossaulax}, i.e. \textit{Natica reclusiana} Deshayes, 1839) or a species complex.

\textbf{\emph{patagonica} Sowerby, 1846 \textit{[Turritella]}}

\textit{Turritella} \textit{patagonica} Sowerby, 1846 (Pl. 22, figs 12–13)

\begin{itemize}
 \item v^1846 \textit{Turritella Patagonica} Sowerby: 256, pl. 3, fig. 48.
 \item 2004b ‘\textit{Turritella}’ \textit{patagonica} Sowerby, 1846; del Río: fig. 9.3.
\end{itemize}

\textbf{TYPE MATERIAL.} Two syntypes: NHM-G26408; NHM-G26409 (probably Port Desire).

\textbf{TYPE LOCALITY.} Puerto Deseado (Port Desire), Argentina. Darwin’s Port Desire locality is somewhat uncertain. The material probably comes from the Tertiary beds exposed a few kilometres inland from the town, which did not exist at the time of his trip. His term ‘Port’ certainly refers to the natural harbour at the mouth of the Deseado river.

\textbf{REMARKS.} The age of this species remains uncertain, as ‘Port Desire’ could well mean either the late Oligocene–early Miocene ‘Patagonian’ beds or the Pliocene (?) sediments exposed in Cerro Laziar. Sowerby also mentions ‘fragments from Navidad’, but these were not located in the Darwin Collection. In order to fix the status of this species we designate specimen NHM-G26408 as the lectotype. This appears to be the specimen figured by Sowerby. Sowerby stated that he adopted the name (i.e. \textit{patagonica}) following a suggestion by d’Orbigny (possibly in a personal communication). A specimen from Playa La Mina was figured by del Río (2004b). This species may belong in \textit{Incatella} DeVries (2007), because of its resemblance to other South American species of this genus. However, we refrain from assigning it to this genus because early whorls are not available on the two syntypes so the development of spiral cords is not known. Later whorls have a secondary subcortical fold, followed by a primary immediately below, a wide interspace that may show 1–3 secondary cords and always has fine spiral threads, two closely spaced strong primary cords at the lower angulation and a secondary cord just next to the lower one at the base.

\textbf{\emph{patagonicus} Sowerby, 1846 \textit{[Fusus]}}

\textit{Trophon sowerbyi} Griffin & Pastorino, 2005 (Pl. 22, figs 14–15).

\begin{itemize}
 \item v^1846 \textit{Fusus Patagonicus} Sowerby: 259, pl. 4, fig. 60 (junior secondary homonym of \textit{Murex patagonicus} d’Orbigny, 1839; placed in \textit{Trophon} by Pastorino 2005).
 \item 1897 \textit{Trophon patagonicus} Sow.; Hering: 296.
 \item 1979 \textit{Trophon} \textit{cf. patagonicus} (Sowerby, 1846); Frassinetti & Covacevich: 50, pl. 10, figs 1–2.
 \item 2005 \textit{Trophon sowerbyi} new name; Griffin & Pastorino: 300 figs 5.1–5.15.
\end{itemize}

\textbf{TYPE MATERIAL.} Lectotype (of Griffin & Pastorino, 2005) NHM-G26415 (figured); paralectotypes NHM-G26416 and NHM-G26417.

\textbf{TYPE LOCALITY.} Port San Julián, Patagonia.

\textbf{REMARKS.} This species has been discussed amply in Griffin & Pastorino (2005) and the reader is referred there for further details.
petitianus d’Orbigny, 1842 [Fusus]

Penion petitianus (d’Orbigny, 1842) (Pl. 23, fig. 1)
v1842 Fusus Petitianus d’Orbigny: 118, pl. 12, fig. 10.
v1854 Fusus Petitianus; Hupé: 172.
v1887 Fusus Petitianus D’Orb.; Philippi: 43, pl. 2, fig. 13.
v1969 Fusinus petitianus (d’Orb.); Herm.: 142, pl. 14, fig. 4.

TYPE LOCALITY. ‘... dans les grès tertiaires à gros grains de Coquimbo (Chili)’ [. . . within the coarse grained Tertiary sands at Coquimbo (Chile)]. The sediment is a hard grey-brown calcareous sandstone that does not belong to the Plio-Pleistocene sediments exposed in that region. The age and exact locality therefore remain unclear.

REMARKS. The figure in d’Orbigny (1842: pl. 12, fig. 10) is highly reconstructed. The specimen itself is a spire with part of the last whorl only, a small part of the neck and all covered with matrix. It is one of the several species of Penion common in the Tertiary of southern South America, this one with fairly simple sculpture.

pumila Sowerby, 1846 [Natica]

‘Natica’ pumila Sowerby, 1846 (Pl. 23, fig. 15)
v1846 Natica pumila Sowerby: 254–255, pl. 3, fig. 28.
v1887 Natica pumila Sow.; Philippi: 85, pl. 9, fig. 23.

TYPE MATERIAL. The holotype could not be located in the Darwin Collection and is deemed to be lost.

TYPE LOCALITY. Chiloé, eastern coast. There are only very small outcrops known on the eastern coast of Chiloé while at the western coast near Curao are impressive cliffs of Late Miocene age. Darwin (1846) gave Lemuy as the type locality. Sowerby noted that it occurs together with Natica striolata Sowerby, 1846, which is fairly frequent at Curao. The age of these eastern outcrops is therefore the same as those on the western coast, which have been assigned a late Miocene to early Pliocene age (Finger et al. 2007).

REMARKS. The identity of this species is unclear at present and must await a revision of the fauna from Chiloé. Better collections may prove that the name is valid, but until such studies are carried out and a neotype is designated we regard it as a nomen dubium.

pyruliformis Sowerby, 1846 [Fusus]

Peonza? pyruliformis (Sowerby, 1846) (Pl. 23, fig. 2)
v1846 Fusus pyruliformis Sowerby: 258–259, pl. 4, fig. 56.
v1887 Fusus pyruliformis Sow.; Philippi: 40, pl. 2, fig. 1.
1896 Fusus pyruliformis Sow.; Möricke: 569–570, pl. 11, figs 1, 2.
v1979 ‘Fusus’ (Murex) pyruliformis Sow.; Tavera: 88, pl. 20, fig. 77.

TYPE MATERIAL. The holotype is housed in the Darwin Collection under number NHM-G26407.

TYPE LOCALITY. Navidad.

REMARKS. The only specimen is a fairly well preserved shell with three prominent spiral cords around the periphery, a smooth, wide, weakly concave sutural ramp and about 12 weaker cords on the base and canal; the succeeding whorl rides up onto the preceding whorl to the periphery (base of the sutural ramp), so the spire is low and stepped and the shell seems to have a calcitic outer shell-layer. ‘Fusus’ pyruliformis is tentatively placed in Peonza Olivera in Olivera et al., 1994 (type species Peonza torquata Olivera in Olivera et al., 1994) because it seems to be closely related to Peonza benjaminia Olivera in Olivera et al., 1994.

regularis Sowerby, 1846 [Fusus]

Penion subregularis (d’Orbigny, 1852) (Pl. 23, figs 6–7)
v1846 Fusus regularis? Sowerby: 258, pl. 4, fig. 55 (junior primary homonym of F. regularis J. Sowerby, 1825).
1852 Fusus subregularis? d’Orb.; 1847; d’Orbigny: 69 (nomen novum).
v1887 Fusus Darwinianus Philippi: 41, pl. 2, fig. 7 (nomen novum).
1985 Siphonalia darwini Phil.; Tavera et al.: pl. 2, figs 10, 11, 14, 15.
v2001 Penion darwinianus (Philippi, 1887); Frassinetti: 82–83, figs 12, 13.

TYPE MATERIAL. Holotype of Fusus regularis?: NHM-G26414 (Navidad).

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile.

REMARKS. Fusus subregularis d’Orbigny is a replacement name for Fusus regularis Sowerby, the type material of which is also the type material of Fusus subregularis (ICZN 1999: Art. 72.7). Fusus darwinianus was equally introduced as a replacement name for the same species by Philippi, obviously not having access to the work of d’Orbigny (1852). The ‘type material’ of Philippi, therefore, has no type status (ICZN 1999: Art. 72.2) even though it is labelled as such. Most specimens labelled as Fusus darwinianus in the Philippi Collection at the Museo Nacional in Santiago (Chile) are conspecific with Fusus subregularis. However, one of them (SGO.PI.554, Navidad) seems to belong to one of the other Penion species common at Navidad. Specimen SGO.PI.584 (Navidad) is labelled ‘lectotipo’ (lectotype), SGO.PI.4533, SGO.PI.4534 and SGO.PI.4535 (all from Navidad) are labelled ‘paralecotipo’ (paralecotype).

rouaultii Hupé, 1854 [Trochus]

Tegula atra (Lesson, 1830) (partim) (Pl. 23, fig. 3)

Prisogaster niger (Wood, 1828) (partim) (Pl. 23, figs 4–5)
v1854 Trochus Rouaultii Hupé: 148–149.

TYPE MATERIAL. Two syntypes housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/101 (Coquimbo), neither were figured by Hupé (1854).

TYPE LOCALITY. ‘Port de Huasco’ [Coquimbo]. Most probably Pleistocene.

REMARKS. There are two specimens labelled as Trochus rouaultii, but one is listed in the catalogue as ‘Trochus
Plate 23 Fig. 1 Penion petitianus (d’Orbigny, 1842). Holotype MNHN-R63173 (height = 55.7 mm). Fig. 2 Peonzza? pyruliformis (Sowerby, 1846). Holotype NHM-G26407 (height = 33.7 mm). Fig. 3 Tegula atra (Lesson, 1830). Syntype Gg2002/101-2 of Trochus ruaultii Hupé, 1854.
luctuosus d’Orb’. Specimen MNHN-Gg2002/101-2 most probably belongs in the Recent Tegula atra (Lesson, 1830), while MNHN-Gg2002/101-1 belongs in the Recent Prisogaster niger (Wood, 1828). To our knowledge Hupé’s name has never been used in the literature so it should not cause confusion.

rugulosa Sowerby, 1846 [Scalaria]

Cirsotrema rugulosa (Sowerby, 1846) (Pl. 23, fgs 8–9)

v*1846 *Scalaria rugulosa* Sowerby: 255, pl. 3, fgs 42, 43. *non* 1887 *Scalaria rugulosa* Sow.; Philippi: 77, pl. 9, fig. 15.

v1902 *Scalaria rugulosa* Sow.; Ortmann: 175, pl. 31, fgs 11a–c.

v1981 *Opalia rugulosa* (Sowerby, 1846); Zinsmeister: 1097, pl. 2, fig. 10.

TYPE MATERIAL. Three syntypes: NHM-G26346, NHM-G26347 and NHM-G26348.

TYPE LOCALITY. Port San Julián, Patagonia.

REMARKS. This is the common species of *Cirsotrema* Mörch, 1853a (type species *Scalaria varicosa* Lamarck, 1822) from the San Julián Formation. The two specimens figured by Sowerby (1846: pl. 3, fgs 42, 43) appear to belong in different taxa. Sowerby seems to have had doubts as to their identity, as the figure captions for his plate 3 read: ‘Fig 42, 43. *Scalaria rugulosa* & var.’ In order to fix the status of the species and avoid misidentifications we designate as lectotype the specimen NHM-G26346, on which Sowerby’s figure 42 was based. Records of *Scalaria rugulosa* from the Navidad Formation and its equivalents refer to a different species.

serena d’Orbigny, 1842 [Oliva]

Oliva serena d’Orbigny, 1842 (Pl. 20, fig. 28)

*1842 *Oliva serena* d’Orbigny: 116, pl. 14, fig. 9.

TYPE MATERIAL. Presumably lost. The specimen was not located in the collections at the MNHN.

TYPE LOCALITY. ‘... dans le grès tertiaires à gros grains quartzeux des environs de Coquimbo’ [From the coarse grained Tertiary quartz sands around Coquimbo, Chile].

REMARKS. The holotype was an internal mould, as was the specimen mentioned by Möricke (1896: 572). Most probably it is a synonym of the extant *Oliva perviviana* Lamarck, 1811, which is common in the Pliocene/Pleistocene deposits around Coquimbo. The name *Oliva serena* is considered a nomen dubium.

simplex Hupé, 1854 [Oliva]

Lamprodoma dimidiata (Sowerby, 1846) (Pl. 23, fgs 10–11)

v1854 *Oliva simplex* Hupé: 217, pl. 3, fig. 9.

TYPE MATERIAL. Nine syntypes are present in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/76 (Topocalma, figured height = 18.7 mm, maximum height = 25.3 mm).

TYPE LOCALITY. ‘Arenas terciarias verdosas de la costa de Colchagua, cerca de Cahuil’ [Greenish Tertiary sands from the coast of Colchagua, near Cahuil, Chile].

REMARKS. See remarks under entry of *dimidiata* Sowerby, 1846 [Oliva]. *Oliva simplex* comes from the Navidad Formation and is a synonym of this well known species.

solida Sowerby, 1846 [Natica]

Magnatica subsulida (d’Orbigny, 1852) (Pl. 23, fgs 12–13)

v*1846 *Natica solida* Sowerby: 255, pl. 3, fig. 41 only (junior primary homonym of *N. solida* Blainville, 1825).

1852 *Natica subsulida* d’Orb., 1847; d’Orbigny: 39 (nomen novum).

v1887 *Natica solida* Sow.; Philippi: 85, pl. 10, fig. 16 (of Sowerby).

TYPE MATERIAL. Sowerby (1846: 255) referred to a single specimen from Navidad (thus the holotype) and several ‘possibly distinct’ specimens from Santa Cruz. Three specimens are still present in the collection (NHM-G26366, NHM-G26367 and NHM-G26342), all labelled Santa Cruz. The latter specimen belongs to a different genus. While NHM-G26366 (Plate 23, fgs 12–13; fig. 40 of Sowerby) and NHM-G26367 belong to *Glossaulax*, NHM-G26342 (Plate 23, fgs 12–13; fig. 41 of Sowerby) is a *Magnatica* Marwick, 1924 (type species *Polinices planispirus* Suter, 1917 = *Natica* (Magnatica) suteri Marwick, 1924, an unnecessary replacement name). Because no *Magnatica* is known to occur at Santa Cruz while it is common at Navidad, NHM-G26342 is regarded as the figured holotype from Navidad. This specimen agrees well with figure and description of Sowerby (1846: 255), who stated that ‘The only specimen is very much worn, particularly about the spire’. The name *Natica solida*, however, is not available due to the existence of a primary homonym and thus the replacement name *Natica subsulida* d’Orbigny, 1852 has to be used (ICZN 1999: Art. 72.7).

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile.

Fig. 14 Glossaulax darwini (Hutton, 1886), non-type specimen of *Natica solida* Sowerby, 1846 NHM-G26366 (height = 30 mm). *Fig. 15 Natica pumila* Sowerby, 1846, from pl. 3, fig. 28 of Sowerby. *Figs 16–17 Penion subreflexus* (Sowerby, 1846). Holotype of *Fusus striatonodosus* Hupé, 1854 MNHN-Gg2002/67 (height = 45.9 mm). *Figs 18–19 Gemmula* (Ptychosyrinx) *subaequalis* (Sowerby, 1846). Holotype NHM-G26344. *Figs 20–23 Sinum subglobosum* (Sowerby, 1846). 20–21, Syntype NHM-G26350 (height = 21 mm). 22–23, Holotype of *Sigaretus elegans* Hupé, 1854 MNHN-Gg2002/79 (height = 17.6 mm).
REMARKS. Sowerby (1846) was not convinced that the material from Santa Cruz was conspecific with that from Navidad (‘closely resembling, but possibly distinct from this species’). Sowerby’s (1846) fig. 40 is of a specimen from Santa Cruz and fig. 41 from Navidad. They are clearly two different taxa. Fine spiral threads are shown on the NHM photo of the Santa Cruz specimen, although it also appears to be decorticated. Ihering (1907) was also aware of this and identified all the material from Santa Cruz that he had previously placed under _Natica solida_ Sowerby as _Polinices santacruzensis_. Sowerby’s name had already been substituted by Hutton (1886) for _Natica darwini_. However, Ihering restricted the use of _darwini_ to the material from Chile and included the material from Santa Cruz in his new species _P. santacruzensis_. Neither Ihering nor Hutton appear to have been aware of d’Orbigny’s (1852: 96) earlier substitution of _Natica solida_ by _subsolida_. Therefore, Hutton’s introduction of _darwini_ for all the material from Navidad and Santa Cruz (plus the specimens from Pareora believed by Hutton himself to be conspecific with the South American material) did nothing to clarify the real taxonomic status of this taxon. Ihering (1907) was right in distinguishing the material from Santa Cruz (including Sowerby’s fig. 40) as clearly different. He failed, however, to notice that Sowerby’s specimen of _subsolida_ from Santa Cruz is different from his type material of _Polinices santacruzensis_ Ihering, 1907 (p. 152–154, pl. 5, fig. 15). At the same time, he stated that the name _darwini_ should be used for the Chilean material, an unwarranted assumption as the Chilean (and Argentine) material had already been renamed _subsolida_ by d’Orbigny. The present situation is that there are two distinct taxa with two available names (_darwini_ and _subsolida_). We hereby select the name _subsolida_ for the species from Chile (Sowerby’s fig. 41), while we believe that _darwini_ should be used for the species from Santa Cruz (Sowerby’s fig. 40). For the specimens described by Hutton from Pareora, Ihering (1907: 154, pl. 5, fig. 16) proposed the name _P. huttoni_. The callus on Ihering’s specimen shows the shallow pit usually present at the junction of the parietal and columellar calluses. The funicle is bordered anteriorly by a conspicuous groove. Philippi gave two figures of what he thought was _Natica solida_, one reproduced from Sowerby (Philippi 1887: pl. 10, fig. 16) and one named _Natica solida_? (Philippi 1887: pl. 10, fig. 18) in the figure captions, which is the large specimen from Lebu mentioned in the text and which probably represents a distinct species. However, Philippi’s identification of his two specimens from Navidad (SGO.PI.44) as _Natica solida_ is correct.

striolata Sowerby, 1846 [Natica]

Natica striolata Sowerby, 1846

1846 _Natica striolata_ Sowerby: 255, pl. 3, fig. 39.

1887 _Natica striolata_ Sow.; Philippi: 86, pl. 10, fig. 15 (of Sowerby).

1972 _Polinices_ (s. lat.) _striolata_ (Sowerby); Fleming in Watters & Fleming: 402.

1979 _Natica_ (Sigaticus) _striolata_ (Sowerby); Taverna: 94.

2001 ‘*Natica* striolata’ Sowerby, 1846; Frassinetti: 79, figs 6, 7.

subaequalis Sowerby, 1846 [Pleurotoma]

Gemmula (Ptychosyrinx) _subaequalis_ (Sowerby, 1846)

(Pl. 23, figs 18–19)

1846 _Pleurotoma subaequalis_ Sowerby: 257, pl. 4, fig. 52.

2000 _Gemmula subaequalis_ (Sowerby, 1846); Frassinetti: 145–147, pl. 2, figs 13–17.

subglobosus Sowerby, 1846 [Sigaretus]

Sinum subglobosum (Sowerby, 1846) (Pl. 23, figs 20–23)

1846 _Sigaretus subglobosus_ Sowerby: 254, pl. 3, figs 36, 37.

1854 _Sigaretus elegans_ Hupé: 226, pl. 1, fig. 5 (junior primary homonym of _S. elegans_ Blainville, 1827).

1887 _Sigaretus subglobosus_ Sow.; Philippi: 86, pl. 9, fig. 19.

2001 _Sinum subglobosus_ (Sowerby, 1846); Frassinetti: 80.

2007 _Sinum subglobosum_ (Sowerby); Finger et al.: fig. 12L.

TYPE MATERIAL. Two syntypes of _Sigaretus subglobosus_: NHM-G26350–1 (Navidad); holotype of _Sigaretus elegans_.
housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/79 (Topocalma).

TYPE LOCALITY. Navidad, Chile, and Ipúin (Ypun) Island, Chonos Archipelago. The sediments exposed at Navidad are included in the Navidad Formation, which is late Miocene to early Pliocene according to Finger et al. (2007). The sediments from Ipúin Island are supposed to be of a similar age (Frassinetti 2004).

REMARKS. *Sinum subglobosum* is well represented in collections from the Navidad Formation, central Chile, to Isla Stokes, southern Chile. It can be easily distinguished from the co-occurring *S. pullum* (Philippi, 1887), which is smaller, basally flattened and has an oblique aperture. *Sinum subglobosum* is an unusually tall, subspherical, thick-shelled species of *Sinum*, and possibly belongs in another genus.

subreflexus Sowerby, 1846 [Fusus]

Penion subreflexus (Sowerby, 1846) (Pl. 24, figs 1–2)

v1846 *Fusus subreflexus* Sowerby: 259, pl. 4, fig. 57.

v1854 *Fusus striato-nodosus* Hupé: 174, pl. 2, fig. 5.

v1887 *Fusus subreflexus* Sow.; Philippi: 41–42, pl. 2, fig. 8.

v1979 ‘F.’ (Siphonalia) subreflexus Sow.; Tavera: 87, pl. 17, fig. 50.

TYPE MATERIAL. Lectotype of *Fusus subreflexus*: NHM-G26405 (height 42.9 mm; Plate 24, figs 1–2), paralectotype of *Fusus subreflexus*: NHM-G26406 (Plate 24, figs 3–4); holotype of *Fusus striatonodosus* in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/67 (Topocalma, height 49.5 mm). The syntype NHM-G26406 does not belong in *Penion subreflexus* but rather in *Penion domeykoanus* (Philippi, 1887). Therefore NHM-G26405 is selected here as lectotype for *Fusus subreflexus*.

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, central Chile. Hupé (1854), as usual, gave Cahuil as type locality while the collection catalogue states Topocalma.

REMARKS. A possible placement in *Penion* had been noted by Ponder (1973). We agree with this, but a full systematic treatment of this species is still wanting.

sulcatus Hupé, 1854 [Fusus]

Fusus’ orbignyi Hupé, 1854

v1854 *Fusus sulcatus* Hupé, pl. 3, fig. 5 (junior primary homonym of *F. sulcatus* Lamarck, 1816).

REMARKS. After the plates were printed, Hupé realised that *Fusus sulcatus* was a preoccupied name and replaced it in the text with *Fusus orbignyi*. See entry under orbignyi Hupé, 1854 [Fusus] herein.

suturalis Sowerby, 1846 [Turritella]

‘*Turritella’ pseudosuturalis* d’Orbigny, 1852 (Pl. 24, fig. 9)

v1846 *Turritella suturalis* Sowerby: 257, pl. 3, fig. 50 (junior primary homonym of *T. suturalis* Phillips, 1836 and *T. suturalis* Forbes, 1844).

1852 *Turritella pseudo-suturalis* d’Orbigny, 1847; d’Orbigny: 33 (nomen novum).

v1887 *Turritella ambulacrum* Sow.; Philippi: 71, pl. 9, figs 1, 1a (non Sowerby, 1846).

1887 *Turritella sowerbyana* Philippi: 71, pl. 9, fig. 2 (nomen novum).

?1887 *Turritella patagonica* Sow.; Philippi: 72 (non Sowerby, 1846).

TYPE MATERIAL. Two syntypes: NHM-G26357; NHM-G26358 (Navidad).

TYPE LOCALITY. Navidad, Chili and Ipúin (Ypun) Island, Chonos Archipelago. The sediments exposed at Navidad are included in the Navidad Formation, which is late Miocene to early Pliocene according to Finger et al. (2007). The sediments from Ipúin Island are supposed to be of a similar age (Frassinetti 2004).

REMARKS. *Turritella ambulacrum* Sowerby, 1846 had been originally described from Patagonia and is different from *T. suturalis*, coming from Navidad. *Turritella suturalis* is a several times preoccupied name and was therefore renamed as *T. pseudosuturalis* by d’Orbigny (1852). Philippi (1887) subsequently introduced the replacement name *T. sowerbyana*, apparently not being aware of the name of d’Orbigny. *Turritella pseudosuturalis* is considered not to belong in *Incatella* DeVries, 2007 (DeVries, pers. comm. 2006).

triplicata Sowerby, 1846 [Voluta]

Palaeomelon jeffi new name (Pl. 24, figs 5–8)

v1846 *Voluta triplicata* Sowerby: 262, pl. 4, fig. 74 (junior primary homonym of *V. triplicata* Donovan, 1802).

v1887 *Voluta triplicata* Sow.; Philippi: 66, pl. 7, figs 8–10.

1907 *Adelomelon triplicata* (Sowerby, 1846); Dall: 365.

1907 *Proscaphella triplicata* Sow.; Philippi: 71, pl. 9, fig. 2 (junior primary homonym of *V. triplicata* Sowerby, 1846); d’Orbigny: 174, pl. 2, fig. 5.

1975 *Proscaphella triplicata* (Sowerby, 1846); Stuardo & Villarroel: 152–153, fig. 19.

1986 *Miomelon triplicata* (Sowerby, 1846); del Río & Martínez, figs 14.3, 14.4.

2007 *Palaeomelon triplicata* (Sowerby, 1846); Nielsen & Frassinetti: 86, figs. 5.1–5.8.

TYPE MATERIAL. There are two syntypes: NHM-G26412 and NHM-G26413.

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, central Chile.

REMARKS. The figured syntype NHM-G26412 (Sowerby 1846: pl. 4, fig. 74) has three narrow, sharp columellar plaits; many fine, even spiral threads all over; a weak keel at the periphery; quite prominent axial folds all over, commencing halfway down the base; protoconch with a ‘caricelloid’ spine. The other syntype (NHM-G26413) has weaker spiral threads and more prominent axials, a more deeply concave sutural ramp than the figured one and it lacks a keel at the periphery. The two specimens may not be conspecific. Del Río & Martínez (2006) figured the syntype NHM-G46412, calling it holotype in the figure captions. This, however, does not serve as a valid lectotype designation. The Chilean species of the genus *Proscaphella* Hering, 1907 have been revised by Stuardo & Villarroel (1975). The type species of *Proscaphella*, *Voluta gracilis* Philippi, 1887 (i.e. *Voluta gracilis* Hering, 1896), belongs in *Miomelon* Dall, 1907 (type species *Volutilithes philippiana* Dall, 1890), which makes...
Plate 24 Figs 1–2 Penion subreflexus (Sowerby, 1846), lectotype NHM-G26405 (height = 42.9 mm). Figs 3–4 Penion domeyoanus (Philippi, 1887), paralectotype of Penion subreflexus (Sowerby, 1846) NHM-G26406 (height = 36 mm). Figs 5–8 Palaeomelon jeffi new name. 5–6, Syntype NHM-G26413 (height = 46.4 mm). 7–8, Syntype NHM-G26412 (height = 53.9 mm). Fig. 9 Turritella pseudosuturalis (d’Orbigny, 1852), syntype NHM-G26357 (height = 24.2 mm). Figs 10–11 Olivancillaria claneophila (Duclos, 1835), holotype of Oliva tumorifera Hupé, 1854 MNHN-Gg2002/75 (height = 31.4 mm). Figs 12–13 Terebra undulifera Sowerby, 1846). 12, Syntype NHM-G26339 (height = 36.3 mm). 13.
Proscaphella a synonym of Miomelon. However, contrary to del Río & Martínez (2006), Voluta triplicata does not belong there and the new genus Palaeomelon was introduced by Nielsen & Frassinetti (2007) to accommodate this and related Chilean Neogene volutes.

After Nielsen & Frassinetti (2007) went to the printer we discovered homonymy with Voluta triplicata Donovan, 1802, a synonym of Traliola ovula (Brugiére, 1789) (see de Frias Martins 1996), and we propose Palaeomelon jeffi as replacement name for Voluta triplicata Sowerby, 1846. This name is in honour of our friend and colleague Jeffrey (Jeff) Stilwell who contributed much to our knowledge of Southern Hemisphere fossil molluscs.

tuberculifera Hupé, 1854 [Cassidaria]

Echinophoria monilifera (Sowerby, 1846) (pl. 21, figs 17–20)
v1846 Cassis monilifera Sowerby: 260–261, pl. 4, fig. 65.

v1854 Cassidaria tuberculifera Hupé: 209, pl. 3, fig. 2.

Type Material. Two syntypes of Cassidaria tuberculifera in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/52.

Type Locality. Hupé (1854: 209) stated Coquimbo as the type locality for this species, but Catalogue 8P reads Cucaco, which is consistent with our own observations that confirm that no caddis occur in Coquimbo, while this species is common in Cucaco.

Remarks. This is a junior synonym of Echinophoria monilifera (Sowerby). See entry under monilifera for further comments.

tumorifera Hupé, 1854 [Oliva]

Olivancillaria claneophila (Duclos, 1835) (Pl. 24, figs 10–11)
v1835 Oliva claneophila Duclos, pl. 29, figs 8, 9.
v1845 Oliva claneophila Duclos: Duclos: 31, pl. 31, figs 8, 9.
v1854 Oliva tumorifera Hupé: 217–218, pl. 3, fig. 8.
v1887 Oliva tumorifera Hupé; Philippi: 68, pl. 8, fig. 9.
v1887 Oliva pyrifor muscularis: Philippi: 73, pl. 8, fig. 11.
v1887 Oliva lebuensis Philippi: 73, pl. 8, fig. 13.
v1887 Oliva otaeguii: Philippi: 74, pl. 8, fig. 21.
v1896 Ancillaria tumorifera Hup. sp.; Mörkei: 572.
v1907 O. tumorifera Phil.; Ihering: 514.
v1966 O. claneophila; Klappenbach: 77.
v1972 Olivancillaria (Linricia) tumorifera (Hupé); Fleming in Watters & Fleming: 398, figs 6 t, w.
v1979 Olivancillaria tumorifera (Hupé, 1854); Tavera: 90, pl. 16, fig. 43.
v2004 Olivancillaria claneophila (Duclos, 1835); Nielsen: 89, figs 2–7; 14–18.
v2007 Olivancillaria claneophila (Duclos): Finger et al.: fig. 12G.

Type Material. Holotype of Oliva claneophila housed un-numbered in the MNHN-BIMM, labelled Navidad; holotype of Oliva tumorifera housed in the Typothèque of the Laboratoire de Géologie under number MNHN-Gg2002/75.

Type Locality. ‘Fossil du Chili (.) . . .’ it appertains to the soil tertiary recouvrant le granit de la Trinidad, canton de la Navidad, and ne se rencontre que sur les escarpments des bords de la mer.’ (Duclos 1846: 31) [From the coast near Navidad, Chile]. According to Hupé (1854), the type of Oliva tumorifera comes from ‘cerca de Cucaco’ [near Cucaco], i.e. Chiloé while the catalogue states Topocalma as type locality. However, the species occurs at both localities and the type locality is that of Duclos’ species.

Remarks. Olivancillaria claneophila is known from the earliest to late Miocene of southern Peru (DeVries & Frassinetti 2003) to Chiloé, southern Chile (Fleming in Waters & Fleming 1972; our unpublished data). This species has been revised recently by Nielsen (2004) and the reader is referred there for a more complete discussion. However, contrary to the date given in Nielsen (2004) the page and plate of Duclos in Chenú were published in 1845 as listed by Sherborn & Smith (1911).

turbinelloides Sowerby, 1846 [Pleurotoma]

Austrotoma echinulata (Hupé, 1854) (Pl. 20, figs 24–25)
v1846 Pleurotoma turbinelloides Sowerby: 258, pl. 4, fig. 53 (junior primary homonym of P. turbinelloides Reeve, 1846).

Type Material. Holotype of Pleurotoma turbinelloides: NHM-G26398 (Navidad).

Type Locality. Navidad, Chile.

Remarks. This is a senior synonym of Austrotoma echinulata (Hupé, 1854) but at the same time a junior primary homonym of Pleurotoma turbinelloides Reeve, 1846. See entry under echinulatus Hupé, 1854 [Fusus].

undulifera Sowerby, 1846 [Terebra]

Terebra undulifera Sowerby, 1846 (Pl. 24, figs 12–13)
v1846 Terebra undulifera Sowerby: 262, pl. 4, figs 72, 73.
v1887 Terebra undulifera Sowerby: Philippi: 63, pl. 7, fig. 2.
v2007 Terebra undulifera Sowerby; Finger et al.: fig. 12l.

Type Material. Two syntypes NHM-G26339 (height = 36.3 mm), NHM-G26340 (height = 37.2 mm) (both Navidad), both figured.

Type Locality. Navidad, Navidad Formation, Miocene, Central Chile.

Remarks. Syntype NHM-G26339 is the short fragment, ca. 18 mm diameter. Syntype NHM-G26340 is the slightly taller and much more complete specimen. The former is a poor specimen with a worn surface. The latter shows a wide, low subsutural cord, followed below by a narrow groove.
and then by a wide, shallowly concave area with prominent, arcuate growth lines. *Terebra undulifera* is well represented in collections from Navidad to Chiloé.

verruculosus Sowerby, 1846 [Triton]

Ameranella verruculosa (Sowerby, 1846) (Pl. 24, figs 14–15)

v∗1846 *Triton verruculosa* Sowerby: 260, pl. 4, fig. 63.

v1887 *Trionix verruculosum* Sow.; Philippi: 53 (partim, non pl. 4, fig. 10).

v1887 *Trionix exiguum* Philippi: 54, pl. 3, fig. 23 (partim).

v1979 ‘*Trionix*’ (Ranella?) *verruculosum* Sow.; Tavera: 90, pl. 19, figs 67a, b.

v1988 *Ameranella verruculosa* (Sowerby, 1846); Beu: 83–84, pl. 3, figs 1–4, 6, 7.

TYPE MATERIAL. Holotype: NHM-G26396 (Navidad).

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile.

REMARKS. This species has been discussed in detail by Beu (1988) and we refer the reader there for further taxonomic information.

Scaphopoda

corrugatus Hupé, 1854 [Dentalium]

‘*Dentalium* corrugatum’ Hupé, 1854 (Pl. 24, fig. 19)

*1854 *Dentalium corrugatum* Hupé: 276, pl. 2, fig. 8.

TYPE MATERIAL. The type material is mentioned in Catalogue 8P under number 201. However, we were not able to find this material in the Gay collection of the MNHN-LG.

TYPE LOCALITY. ‘Terrenos terciarios de la costa de Topocalma, en la provincia de Colchagua’ [Tertiary beds on the coast of Topocalma, province of Colchagua].

REMARKS. It is unclear if the type material still exists. Judging from Hupé’s original figure, *Dentalium corrugatum* Hupé, 1854 seems to be a synonym of *D. giganteum* Sowerby, 1846 (i.e. *D. subgiganteum* d’Orbigny, 1852) but if the type material is lost, selection of a neotype should await a systematic revision of all the Chilean Neogene scaphopods.

giganteum Sowerby, 1846 [Dentalium]

Fissidentalium subgiganteum (d’Orbigny, 1852) (Pl. 24, figs 18, 22)

v∗1846 *Dentalium giganteum* Sowerby: 263, pl. 2, fig. 1 (junior primary homonym of *D. giganteum* Phillips, 1829 and *D. giganteum* Zenker, 1836).

1852 *Dentalium subgiganteum* d’Orb., 1847; d’Orbigny: 94.

TYPE MATERIAL. Holotype of *Dentalium giganteum*: NHM-G26395 (Navidad).

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile.

REMARKS. This species is common from Navidad to Chiloé. A composite of three specimens from our collections reaches a total length of at least 15 cm. The holotype shows remains of the deep apical lobe typical of *Fissidentalium* Fischer, 1885 (type species *Dentalium capillosum* Jeffreys, 1877). Steiner & Kabat (2004) cited J. de C. Sowerby as author of this species, which is a mistake.

intermedium Hupé, 1854 [Dentalium]

‘*Dentalium* intermedium’ Hupé, 1854 (Pl. 24, fig. 23)

*1854 *Dentalium intermedium* Hupé: 276, pl. 2, fig. 9.

TYPE MATERIAL. This species is not listed in Catalogue 8P and we did not find any possible syntypes in the collection.

TYPE LOCALITY. ‘Terrenos terciarios de la costa de Topocalma, en la provincia de Colchagua’ [Tertiary beds on the coast of Topocalma, province of Colchagua].

REMARKS. The type material is unknown and the figure does not show whether it is a smooth species or if the figured specimen is an internal mold. We regard *Dentalium intermedium* as a nomen dubium.

majus Sowerby, 1846 [Dentalium]

Fissidentalium majus (Sowerby, 1846) (Pl. 24, fig. 16)

v∗1846 *Dentalium majus* Sowerby: 263, pl. 2, fig. 3.

TYPE MATERIAL. Holotype: NHM-G26394.

TYPE LOCALITY. Isla Guafo, Pliocene, southern Chile.

REMARKS. The deposits of Isla Guafo (formerly Huafo) are generally interpreted as being Late Pliocene in age (Frassinetti 1997, 2000). Frassinetti (1997, 2000) revised the bivalves and the gastropods, but not the rest of the fauna. *Fissidentalium majus* is very similar to *F. subgiganteum* and may be closely related. Steiner & Kabat (2004) cited J. de C. Sowerby as author of this species, which is a mistake.

sulcosum Sowerby, 1846 [Dentalium]

‘*Dentalium* sulcosum’ Sowerby, 1846 (Pl. 24, figs 17, 20, 21)

v∗1846 *Dentalium sulcosum* Sowerby: 263, pl. 2, fig. 2.

TYPE MATERIAL. Holotype in two pieces: NHM-G26402.

TYPE LOCALITY. Navidad, Navidad Formation, Miocene, Central Chile.

REMARKS. This species apparently occurs in the siltstones and not in the sandstones of the Navidad Formation. As Sowerby (1846: 263) pointed out, it has 14 rather strong longitudinal ribs and through this can easily be recognised. Steiner & Kabat (2004) stated that this species is a synonym of *Dentalium majus* Sowerby, 1846 (see above) due to first reviser action of Ortmann (1902). However, these two species are clearly not the same. Steiner & Kabat (2004) cited J. de C. Sowerby as author of this species, which is a mistake.
ACKNOWLEDGMENTS

Our foremost thanks go to Alan Beu (IGNS, Lower Hutt, New Zealand), who assisted in many ways throughout the preparation of the manuscript and made available his notes on the Darwin collection. Agnès Rage, Jean-Michel Pacaud and Didier Merle (Laboratoire de Paléontologie, MNHN) and Emmanuelle Vennin (formerly Laboratoire de Géologie, MNHN) gave access to the collections under their care, loaned material and helped in a very cheerful way during our stays in Paris. Sarah Long, Caroline Hensley and Jon Todd (NHM) helped in every possible way during S.N.N.’s stay at the NHM and Paul Taylor, Jon Todd and Paul Jeffreys (NHM) provided most of the photos of the Dar- win collection. Charlie Sturm (Carnegie Museum of Natural History) provided photos of the neotype of Diplodon diluvii and Daniel Frassinetti provided the scans of original Sowerby and Hupé plates. Eva Vinx (Geologish-Palaentologisches Institut der Universität Hamburg, Germany) provided photos of the d’Orbigny and Hupé material from the Laboratoire de Géologie. The manuscript benefited from thorough reviews by Alan Beu (IGNS) and Guido Pastirino (Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina). M.G. acknowledges financial support from the MNHN in Paris to travel there and study the d’Orbigny and Hupé/Gay Collections. For the same purpose, S.N.N. acknowledges financial support through a grant within the European Union Framework Programme ‘Improving Human Potential: Access to Research Infrastructures’ (COPARSYS). A Grant within the European Union Framework Programme ‘Synthesis of systematic resources’ (SYNTHEYS), which is gratefully acknowledged, enabled S.N.N. to revise the Darwin Collection at the NHM. M.G. is a member of the ‘Carrera del Investigador Científico’, within the National Research Council of Argentina (CONICET), whose financial support is acknowledged. Field work was partially supported by the Universidad Nacional de La Pampa. S.N.N.’s work was financially supported by the Deutsche Forschungsgemeinschaft, grants Ba 675/25-1 and Ni 699/4-1, and a 1 year doctoral grant from the University of Hamburg.

REFERENCES

—. 1899b. Rectifications de nomenclature. Revue critique de Paléozoologie 3: 133–139.

Revision of South American Tertiary Mollusc Types

