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ABSTRACT: The complex geodynamic history of the Paratethys periodically fostered the evolution of a highly endemic biota with only
limited exchange between the neighboring Mediterranean and Indo-Pacific provinces. The resulting very peculiar fossil assemblages
forced the introduction of a regional chronostratigraphic subdivision for the Western/Central and Eastern Paratethys respectively. For the
Central Paratethys we present a summarized and updated database for the individual stages, and we review the current status for correla-
tion with the Mediterranean stratigraphic framework. The Miocene Central Paratethys stages were defined on exclusively
paleontological criteria in type sections (holostratotypes and faciostratotypes). They are all bounded by either sedimentary hiatuses or
distinct facies changes, inferred to mark lowstands in sea level, and not a single boundary stratotype has been defined. Some correlating
tie-points to the Mediterranean succession are based on calcareous nannoplankton and planktonic foraminifers; magnetostratigraphic
correlation is very limited. All stages can be assigned to the putatively third-order sea level cycles, with the Eggenburgian, Badenian and
Pannonian Stages each spanning three cycles and the Ottnangian, Karpatian, and Sarmatian one each. The Karpatian/Badenian boundary
correlates with the Burdigalian/Langhian (Early/Middle Miocene) boundary, and the Sarmatian/Pannonian boundary correlates with the
Serravallian/Tortonian (Middle/Late Miocene) boundary. The correlation to third-order cycles and the detection of astronomical signals
suggest that not only aregional but also a strong global signal is present in the rock record of the Central Paratethys. Since the current defi-
nition of a stage includes its global spread, formally defined regional stages are redundant and therefore also not necessary for the Central
Paratethys. However, if stages are essentially regional, then a regional scale as for Central Paratethys would be much more appropriate.

INTRODUCTION

During the Cenozoic Era Africa moved towards Eurasia with a
northwards shift and a generally counterclockwise rotation in-
volving several microplates in the Mediterranean area (Kovac
et al. 1998; Marton et al. 2003, 2006; Marton 2006; Seghedi et
al. 2004). As a consequence, Eurasian paleogeography changed
dramatically from vast marine areas interrupted by archipelagos
into dry land. This increasing degree of continentalisation was
accompanied by the rise of the Alpidic chains which intensively
structured topography. Around the Eocene/Oligocene boundary
Africa’s northward movement and resulting European plate
subduction caused the final disintegration of the ancient (West-
ern) Tethys Ocean (Béldi 1980; Harzhauser et al. 2002; Harz-
hauser and Piller 2007). The Indo-Pacific Ocean came into
existence in the east and various relic marine basins remained in
the west. Along with the emerging early Mediterranean Sea, an-
other heritage of the vanishing Tethys was the vast Eurasian
Paratethys Sea.

The recognition of the Paratethys as a biogeographic entity
which differs from the Neogene Mediterranean goes back to
Laskarev (1924). He proposed the existence of this lost sea on the
ground of the peculiar character of the mollusc fauna after thor-
oughly investigating the Vienna, Styrian, Pannonian, Dacian,
and Euxinian basins. During its maximum extent the Paratethys
spread from the Rhone Basin in France towards Inner Asia. It
was segregated into three paleogeographic and geotectonic
units (not only two as sometimes reported, e.g., Nevesskaya
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1999; Vasiliev et al. 2004, 2005) each recording a different en-
vironmental history. The smaller western part consists of the
Western and the Central Paratethys being opposed by the larger
Eastern Paratethys. The Western Paratethys comprises the Al-
pine Foreland Basins of France, Switzerland, S Germany and
Upper Austria (Senes 1961). The Central Paratethys includes
the Eastern Alpine - Carpathian Foreland basins, from Lower
Austria to Moldavia, and the Pannonian Basin System. The
Eastern Paratethys comprises the Euxinian (Black Sea), Cas-
pian and Aral Sea basins (Nevesskaja et al. 1993). The eastern
Carpathian Foreland transforms towards the end of the Middle
Miocene, switching from the Central Paratethys into the Eastern
Paratethys geo- and hydrodynamic regime. This event coincides
with the disintegration of the Central Paratethys triggered by the
installation of the Late Miocene Lake Pannon that became re-
stricted to the Pannonian Basin System (Magyar et al. 1999b).

Eurasian ecosystems and landscapes were impacted by a com-
plex pattern of changing seaways and landbridges between the
Paratethys, the North Sea and the Mediterranean as well as the
western Indo-Pacific (e.g., Rogl and Steininger 1983; Rogl
1998a, 1999; Popov et al. 2004). Sene$ and Marinescu (1974)
and Rusu (1988) perceived four stages in the geodynamic history
of the Paratethys. In succession they are Proto-Paratethys,
formed in the Late Eocene to Early Oligocene by the initial iso-
lation from the open oceans; Eo-Paratethys (Late Oligocene and
Early Miocene); Meso-Paratethys (late Early Miocene to early
Middle Miocene); and Neo-Paratethys (later Middle to Late
Miocene). (See also Steininger and Wessely 2000.)
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This geodynamically controlled paleogeographic and biogeo-
graphic differentiation caused major difficulties in the strati-
graphic correlation between the Paratethys and the
Mediterranean and global stratigraphy respectively. These
problems led to the establishment of regional chronostrati-
graphic and geochronologic scales, which have been exten-
sively documented for the Central Paratethys in the series
“Chronostratigraphie und Neostratotypen” which distinctly im-
proved the general knowledge on the Neogene Central Para-
tethys and its stratigraphy (Cicha et al. 1967; Steininger and
Senes 1971; Baldi and Sene§ 1975; Papp et al. 1973, 1974,
1978, 1985; Stevanovic et al. 1990). The different geodynamic,
paleogeographic and paleobiogeographic histories within the
Paratethys itself, led to definition of chronostratigraphic/
geochronologic scales for the Western, and for the Eastern
Paratethys, additional to that of the Central Paratethys (e.g.,
Steininger et al. 1976; Rogl 1996; Popov et al. 2004). In this
overview we mainly focus on the Miocene stratigraphy of the
Central Paratethys and its correlation to the Mediterranean area

(fig. 1).

REGIONAL CHRONOSTRATIGRAPHY AND
CORRELATION

The development of prolonged anoxic bottom conditions dur-
ing the Early Kiscellian (Early Oligocene, cf. Baldi 1986)
marks the birth of the Paratethys (e.g., Schulz et al. 2005). As a
consequence, black shales (“Fischschiefer”) developed in the
Alpine foreland basin, the bituminous, laminated Tard Clay
was deposited in the Hungarian basin and menilites in the
Carpathian Flysch trough (Baldi 1998). In response to this
event, a first endemic mollusc fauna evolved whilst spreading
from the Asian Eastern Paratethys towards the west (Popov et
al. 1985). This peculiar Solenovian fauna characterizes the
Eastern Paratethyan Solenovian Stage. Environmental chemis-
try — probably brackish water conditions — within the vast in-
land sea triggered a blooming and rapidly evolving, highly
endemic bivalve fauna with genera such as Janschinella,
Korobkoviella and Ergenica (Popov et al. 1985; Nevesskaja et al.
1987). The accompanying, monospecific, nannoplankton and
diatom blooms also point to reduced salinities and cool-temper-
ate surface waters extending from Bavaria to Transcaspia (Rogl
1998a).

Late Oligocene — Early Miocene
Egerian stage

The stage was first defined by Béldi (1969) and described in de-
tail by Baéldi and Sene$ (1975). Its stratotype (holostratotype)
was defined at Eger (Wind’s brickyard) in northern Hungary
(fig. 2, Béldi 1975; Baldi et al. 1999). At the type-locality the
base of the stage is marked by an abrupt lithological change
from Kiscell Clay to glauconitic sandstone. This level coincides
with the first occurrence (FOD) of Costellamussiopecten pasini
(Meneghini) (=Flabellipecten burdigalensis Baldi, non
Lamarck). Generally, the base is defined with the first occur-
rences of the benthic foraminifer Miogypsina (Miogypsinoides)
complanata Schlumberger and the planktonic foraminifer
Globigerinoides. Several species of molluscs also occur for the
first time (e.g., Palliolum incomparabile (Risso), Costella-
mussiopecten schreteri (NoszKy), Laevicardium cyprium
(Brocchi), and Turritella beyrichi Hoffman). The stratotype is
truncated by an unconformity (Baldi 1975, pp. 100, 110-111).
In some of the faciostratotype-sections (Budafok-2, Hungary;
Orlek, Slovenia), Egerian beds grade into Eggenburgian sedi-
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ments. The boundary coincides with a lithological change
which implies distinct shallowing. In other faciostratotype-sec-
tions (Mdriahalom, Hungary; Kovacov, Slovakia) the top of the
Egerian is missing due to an erosional unconformity.

Facies: Sedimentologically and lithologically the Egerian is a
continuation of the mainly siliciclastic depositional systems of
the Oligocene Kiscellian with predominantly silty-clayey sedi-
ments. Carbonate formation is subordinate throughout but
mixed carbonate-siliciclastic systems occurred. These are domi-
nated by corallinaceans, bryozoans and larger benthic foram-
inifers such as miogypsinids and lepidocyclinids (Vanova 1975;
Baldi 1986; Baldi et al. 1999; Kaiser et al. 2001).

Correlation: This stage straddles the Oligocene/Miocene bound-
ary (Baldi and Sene§ 1975) in comprising the upper part of the
Chattian and the lower part of the Aquitanian (fig. 1). As pointed
out by Baldi et al. (1999) the distribution of larger benthic
foraminifers implies a correlation of its lower boundary with the
lower boundary of the Shallow Benthic Zone SBZ 22, that is
calibrated in the Mediterranean and NE Atlantic with the base
of the planktonic foraminiferal zone P22 (Cahuzac and Poignant
1997). Moreover, the recalibration of 3'4 order sea level se-
quences supported by the biostratigraphic results of Mandic and
Steininger (2003), implies the position of the upper Egerian
boundary in the mid-Aquitanian, and not at its top (fig. 1). Al-
though suggested already by Hungarian stratigraphers (e.g.,
Baldi et al. 1999), this interpretation contrasts substantially with
the current stratigraphic concept (e.g., Rogl et al. 1979; Rogl
and Steininger 1983; Steininger et al. 1985; Vakarcs et al. 1998;
Rogl 1998b; Mandic and Steininger 2003). The Paleogene/Neo-
gene boundary is difficult to detect in the Central Paratethys
since the index fossil for the Aquitanian, Paragloborotalia
kugleri, is absent. Correlations are usually based on calcareous
nannofossils including uppermost NP 24 to NN 1/2 nannozones
(Rogl 1998b). In addition, Miogypsina species are very useful
for biostratigraphic correlation. Whereas the lower Egerian de-
posits belong to SBZ 23 the upper Egerian limestones with
Miogypsina gunteri found at Bretka (E Slovakia) (Baldi and
Senes 1975) belong to the lower part of SBZ 24 and thus corre-
spond to the lower Aquitanian (Cahuzac and Poignant 1997).
Consequently, in terms of sequence stratigraphy the Egerian/
Eggenburgian boundary corresponds with the Aq 2 sea level
lowstand of Hardenbol et al. (1998). The following 3™ order
transgression-regression cycle already includes Eggenburgian
deposits (see below). This interpretation is in accordance with
the general regressive trend in the upper Egerian sediments and
with erosional unconformities frequently forming their top. In
continuous sections the sediments at the boundary were often
deposited in very shallow water environments characterized by
brackish water faunas. Continuous deep marine sections are
only known from the strongly tectonised thrust sheets of the
Outer West Carpathians and their equivalents (Krhovsky et al.
2001).

Paleogeography: In the Late Oligocene the Paratethys was a
huge, west-east oriented sea (fig. 3A). New gateways towards
the Western Tethys opened and normal marine conditions were
re-established after the anoxia during the Kiscellian (see above).
The connection towards the North Sea Basin was open via the
Rhine Graben and a connection to the Venetian Basin opened in
the southwest (Rogl 1998a; Reichenbacher 2000). This trans-Eu-
ropean connection of the Rhine Graben and Maince Basin with
the Tethyan Rhone-Bresse Graben and the Paratethyan Alpine
Foreland ceased during the late Egerian (Reichenbacher 2000).
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FIGURE 1

Oligocene — Miocene geochronology, geomagnetic polarity chrons, biozonations of planktonic foraminifers and calcareous nannoplankton (all after
Lourens et al. 2004), sequence stratigraphy and sea level curve (after Hardenbol et al. 1998), and oxygen isotope stratigraphy (after Abreu and Haddad
1998) partly recalibrated and correlated to regional chronostratigraphy of the Central Paratethys. The black dots on the right column indicate the strati-
graphic position of the holostratotypes of the regional stages.

153



Werner E. Piller et al.: Miocene Central Paratethys stratigraphy — current status and future directions

Paralic coal basins and freshwater environments developed in
the westernmost reaches of the Paratethys (Barthelt 1989; Berger
1996), while the seaways on top of the still partly submerged Al-
pine nappes into the Western Tethys remained open (Wagner
1996; Steininger and Wessely 2000).

Eggenburgian Stage

The Eggenburgian Stage was defined by Steininger and Sene§
(1971, p. 45-46). The stratotype Eggenburgian is located in NE
Austria at Loibersdorf some 60 km NW from Vienna (fig. 2;
Steininger 1971). Nowadays it outcrops poorly and a continuous
section is not available. The base of the Eggenburgian in the
area of the stratotype section is transgressive on Palacogene ter-
restrial-fluvial-limnic sediments or on crystalline basement
rocks. Due to a complex paleotopography in the Eggenburgian
type region this transgressive development causes a hetero-
chronous onset of Eggenburgian sediments. This complex evo-
lution was more recently unravelled by a statistically based
mollusc stratigraphy by Mandic and Steininger (2003). In the
entire Central Paratethys an erosional gap is frequently devel-
oped at the base of the stage and in all examples the basal sedi-
ments reflect a transgressive pattern (Rogl and Steininger
1983).

The biostratigraphic frame of the Eggenburgian is based largely
in its characteristic mollusc fauna with large-sized taxa, in par-
ticular pectinids and cardiids (Steininger and Sene§ 1971). The
base is marked by the first occurrence of Oopecten gigas
(Schlotheim), the top (base Ottnangian Stage) by the first occur-
rence of Pecten hermansenni (Dunker). A subdivision into
lower, middle and upper Eggenburgian is based on mollusc
biostratigraphy (Mandic and Steininger 2003). The lower
Eggenburgian is defined biostratigraphically by the total range of
Rudicardium grande (Hoelzl), the middle Eggenburgian by the
total range of Laevicardium kuebecki (Hornes). The total range
of Oopecten gigas spans both biostratigraphic units. The upper
Eggenburgian is defined by the FOD of Gigantopecten holgeri
(Geinitz) and Flexopecten palmatus (Lamarck).

Benthic foraminifers are of lesser biostratigraphic importance,
e.g., the first occurrences of Elphidium ortenburgense Egger, E.
felsense Papp, and Uvigerina posthantkeni Papp. Miogypsina
intermedia Droger is reported from the Austrian Molasse Basin
(Papp 1960). The ostracod genus Falunia Gerkoff and Moyes
and calcareous nannoplankton taxon Helicosphaera amplia-
perta occur for the first time.

Facies: The majority of well studied Eggenburgian sediments
come from shallow water depositional environments. The
Eggenburgian is dominated by sandy and pelitic near-shore
sedimentation. Carbonates are scarce, patchy and usually of hy-
brid character. A typical example are the shallow marine
corallinacean rhodolite carpets associated with fine to medium
sand, inhabited by the scutellid echinoid Parmulechinus
hoebarthi (Kiihn) in the Horn Basin of northern Austria
(“Scutellensande”) (Steininger 1971; Kroh 2005). In deep-
neritic to bathyal settings typical grey calcareous clays with in-
tercalations of sands — the so-called “Schlier” — developed.
Only in the Outer Carpathians did a relic Flysch trough remain
with prevailing turbiditic sequences (Baldi 1998; Popov et al.
2004).

Correlation: Supraregional correlation is possible by a few tie

points only: calcareous nannoplankton clearly indicates the
presence of zones NN2 and NN3 (Steininger et al. 1976;
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Roetzel et al. 1999) and the mammal fauna places it into the Eu-
ropean land mammal zone MN3 (Mein 1989; Steininger et al.
1996; Steininger 1999). The latter zone is detected in the upper
Eggenburgian sediments of the type region bearing Giganto-
pecten holgeri. The lower part of the Eggenburgian is correlated
with the upper MN2 zone. In terms of sequence stratigraphy and
sea level changes the general stratigraphic development of the
Eggenburgian coincides to three 3"4 order sea level changes.
These can be correlated with the Aq 2 lowstand, marking the
base of the Eggenburgian, Aq 3/Bur 1 and Bur 2, and end with
the Bur 3 lowstand (top Eggenburgian/base Ottnangian) of
Hardenbol et al. (1998). The mollusc fauna of the basal
Eggenburgian (which is correlated herein with the upper
Aquitanian), bears Oligocene relics of northern origin (e.g.,
Drepanocheilus speciosus) (Steininger 1963), whereas the trop-
ical fauna of the middle Eggenburgian is correlated herein with
the transgression of the Bur 1 sequence (fig. 1; Mandic et al.
2004). The Bur 2 lowstand (Hardenbol et al. 1998) at the base of
the upper Eggenburgian is marked by a prominent erosional
surface and reworking of basement rocks. The fossil assem-
blages in upper Eggenburgian deposits reflect a substantial fau-
nal turnover marked by numerous first occurrences of species
with proto-Mediterranean origin (Mandic and Steininger 2003).
This is interpreted as a consequence of a prominent flooding
event allowing the faunal migration from the latter region. Fi-
nally, the next prominent erosional surface - topping the upper
Eggenburgian siliciclastics - is correlated herein with the Bur 3
lowstand and the base of the Ottnangian. The lower Ottnangian
sediments differ distinctly due to the onset of a warm-temperate
carbonate factory, indicated by bryozoan-corallinacean lime-
stones (Zogelsdorf Formation) (Nebelsick 1989). Larger ben-
thic foraminifers (Amphistegina) and hermatypic corals are
subordinate, the latter form only very small patches. Contrary to
Vakarcs et al. (1998) we consider the major sea level lowstand
at the base of the Eggenburgian to be equivalent not to Aq 3/Bur
1 but to Aq 2, which accords better with calcareous nanno-
plankton, mammal and mollusc data (Steininger et al. 1976;
Mandic and Steininger 2003).

Paleogeography: Broad connections into the Eastern
Paratethys allowed the spreading of the middle Eggenburgian
mollusc faunas with Laevicardium kuebecki as far east as the
Crimean Peninsula and Georgia (Rogl 1998a). In addition, the
western seaway via the Alpine Foreland, which was sealed dur-
ing the late Egerian and maybe also during the earlier Eggen-
burgian, started to open. The sea invaded the foreland
successively from the west and entered the Central Paratethys
(Berger 1996) at last with the late Eggenburgian. This newly es-
tablished marine pathway of the Paratethys via the Alpine
Foredeep into the Rhone Basin probably coincided with a hypo-
thetical second flow from the Eastern Mediterranean (Martel et
al. 1994). These connections gave rise to a new hydrodynamic
regime reflected in the meso- and macrotidally controlled de-
posits throughout the Alpine Foreland basins lasting from the
late Eggenburgian to the middle Ottnangian (Allen et al. 1985;
Faupl and Roetzel 1990). A second area of tidal deposits is de-
scribed by Sztand (1995) from the Eggenburgian of the North
Hungarian Bay.

Faunistically, the changes in paleogeography are reflected by
the immigration of western Mediterranean taxa such as the
echinoid Arbacina catenata (Desor) (Kroh and Harzhauser
1999) and several bryozoans (Vavra 1979). Among molluscs,
the prominent faunistic overturn is marked by the introduction
of Burdigalian Mediterranean pectinids such as Flexopecten
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palmatus and Gigantopecten holgeri going along with the ex-
tinction of the Eggenburgian endemics such as Oopecten gigas
and Laevicardium kuebecki (Mandic and Steininger 2003). An-
other important immigration is represented by the fossil sea
cow Metaxytherium krahuletzi being conspicuously common in
the upper Eggenburgian but absent in older horizons. All that
happens distinctly prior to the onset of the warm-temperate car-
bonate production on top of upper Eggenburgian siliciclastics
(Roetzel et al. 1999). The onset of the warm-temperate carbon-
ate factory is probably coeval with the slight cooling indicated
by Zachos et al. (2001) and by the MBi-2 isotope event of
Abreu and Haddad (1998) (Fig. 1). The loss of tropical mollusc
taxa between the middle and the upper Eggenburgian could
coincide with the MBi-1 isotope event.

Ofttnangian Stage

The stratotype is defined in a clay pit near the village of Ottnang
in Upper Austria (Rogl et al. 1973, fig. 2). The type section is
characterized by the onset of well-bedded, blue-grey, fine
sandy, micaceous claymarls (locally called “Ottnang Schlier”)
which are underlain by fine to medium grained quartz sands
(““Atzbach Sands”). The base of the Ottnangian is not defined in
this section, the top is cut by erosion. In basinal sections of the
Alpine foredeep, sedimentation is considered to be continuous
from the Eggenburgian into the Ottnangian, whereas in more
eastern locations (e.g., Hungary) the base is marked by a
disconformity. In Slovakia and northern Hungary, seemingly
continuous sedimentation from the Ottnangian into the
Karpatian is reported.

Generally, the Ottnangian is a strictly twofold stage with a nor-
mal marine development in its lower part and a predominance
of restricted marine to fresh water environments in its upper
part. The most characteristic and important biota are marine
molluscs, partly of boreal affinity, but mainly of Paratethyan
Eggenburgian origin. Some of the Ottnangian mollusc faunal
elements are of biostratigraphic importance: the FOD of Pecten
hermansenni (Dunker) mark the base of the stage. The
foraminiferal fauna is very similar to that of the Eggenburgian
(Harzhauser and Piller 2007). Among planktonic taxa Cassi-
gerinella spinata Rogl occurs and Globigerina ottnangiensis
Rogl is abundant. Among benthic foraminifers Sigmoilopsis
ottnangensis, Bolivina matejkai, B. scitula, and Amphicoryna
ottnangensis are characteristic, as also Pappina primiformis and
Pappina breviformis (Steininger et al. 1976; Cicha et al. 1998).
The late Ottnangian is characterized by the occurrence of a
highly distinct endemic bivalve fauna, the so called “Rzehakia
fauna” (=synonymous to “Oncophora fauna”; cf. Senes 1973).
This consists of endemic genera such as Rzehakia and
Limnopagetia, which offer an excellent correlation tool within
Paratethyan deposits (Ctyroky 1972; Mandic and Coric 2007).

Facies: In the lower Ottnangian, sedimentation is dominated by
siliciclastics with widespread tidally influenced deposits and the
characteristic sandy/silty “Schlier” sediments (Faupl and
Roetzel 1987, 1990). The warm-temperate bryozoan-coral-
linacean limestones are known only from the Eggenburgian re-
gion (Zogelsdorf Fm.), which have been considered up till now
to be of late Eggenburgian age (see discussion above). The car-
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bonates previously correlated with the upper Ottnangian from
the Hungarian Bantapuszta section (Kékay 1973) recently have
been correlated with the Karpatian (Mandic 2003). The shift
was due to reinterpreting biostratigraphic data from pectinid bi-
valves, foraminifers and calcareous nannoplankton, and to the
reconsideration of the regional geologic history. On the evi-
dence of silicoflagellate assemblages and the frequent occur-
rence of diatomites, Bachmann (1973) favoured temperate water
conditions for the lower Ottnangian deposits.

The upper part of the Ottnangian is represented by fluvial-lac-
ustrine environments of the Upper Freshwater Molasse in the
Western Alpine Foreland Basin (Berger 1996). With the excep-
tion of the Northern Alpine Foreland Basin and its continuation
into the Polish foredeep, no fully marine environments are
known from the Carpathian-Pannonian-Dinaride domain where
brackish to freshwater sedimentary environments prevailed
(Koviéc et al. 2004; Kotlarczyk et al. 2006). Consequently, dur-
ing the late Ottnangian and the synchronous Kotsakhurian in
the Eastern Paratethys biogeographic relations between the
Paratethys and the Mediterranean Sea ceased. This Ottnangian
crisis is reflected in nearshore settings by brackish water condi-
tions and a sudden evolutionary peak in bivalves, resulting in a
large number of endemic genera of the so-called “Rzehakia
fauna” (see above). This fauna expanded from the Eastern
Paratethys into the Central and Western Paratethys Sea during
the late Ottnangian (Steininger 1973).

Correlation: The Ottnangian was differentiated because of a
regressional phase at the end of the Eggenburgian (Senes 1973),
inferred to be due to tectonic movements particularly effective
in the Carpathian area. These tectonic activities, however, en-
hanced a global sea level fall at the beginning of the Ottnangian
which can be correlated with the TB 2.1. cycle of Haq et al.
(1988) and represents Bur 3 of Hardenbol et al. (1998). The
Ottnangian therefore corresponds to only one 3"¢ order sea
level change (Kovéc et al. 2004). Biostratigraphic correlation
outside Paratethys is very limited. Within the Ottnangian the
foraminiferal genus Catapsydrax occurs for the last time. Rogl
(1998b) linked this event with the LAD of C. unicavus/C.
dissimilis, which defines the boundary between M3 and M4 of
Berggren et al. (1995). In terms of nannoplankton stratigraphy
zones NN3 and NN4 are represented (Steininger et al. 1976;
Rogl et al. 2003a). Magnetostratigraphic correlation points to a
rough correspondence of the entire Ottnangian to Chron C5D.

Paleogeography: During the early Ottnangian the paleogeo-
graphic configuration remains similar to that during the
Eggenburgian, but in the late Ottnangian the uplift of the Alpine
Foreland Basin terminated the western connection to the Medi-
terranean (Rogl 1998a). In addition, the sea level fall during the
Early Miocene global sea level cycle TB 2.1. (Haq et al. 1988)
accentuates the beginning isolation of the Paratethys from the
Mediterranean Sea during the late Ottnangian. Geographic dif-
ferences within the endemic “Rzehakia fauna” between Ba-
varia, Austria and Moravia might indicate a further
disintegration of the Paratethys into several isolated brackish
lakes (Mandic and Coric 2007).

Karpatian Stage

This stage was erected by Cicha and Tejkal (1959) and defined
by Cicha et al. (1967) in the first volume of the series Chrono-
stratigraphie und Neostratotypen based on the stratotype sec-
tion Slup (fig. 2) in Moravia (Czech Republic). Brzobohaty et
al. (2003) updated this volume with a wealth of new data. The
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stratotype section is characterized by bedded, fine-grained
sands and lenses of coarse sands with a rich molluscan fauna. Its
base is marked by an unconformity, forcing Cicha and Rogl
(2003) to issue a “Provisional definition of the Karpatian™, in
the updated volume. This discontinuity occurs in all shallow
marine settings (Rogl et al. 2003a). Continuous sedimentation
between the Ottnangian and the Karpatian is expected only in
deeper parts of Central Paratethys basins particularly in the
Pannonian realm (Cicha and Rogl 2003).

Originally, the stage was established to document the surge of
new faunal elements from the Mediterranean at its base. Some
of the molluscs occur for the first time in the Karpatian (e.g.,
Conus steindachneri, Thais exilis, Gyrineum depressum,
Acanthocardia paucicostata, Cerastoderma arcella, Ervilia
pusilla, Paradonax intermedia), most, however, continue into
the Badenian (Harzhauser 2002; Harzhauser et al. 2003). Due to
this continuation, differentiating Karpatian and Badenian gas-
tropod assemblages is sometimes difficult (Harzhauser et al.
2003). Restricted to the Karpatian are Modiolus excellens
Csepreghy-Meznerics and Mactra (Barymactra) nogradensis
Csepreghy-Meznerics (Mandic 2003).

The stage is defined biostratigraphically with the FAD of
Uvigerina graciliformis Papp and Turnowsky (Papp et al.
1971). Several other uvigerinids co-occur, such as Pappina
primiformis, P. breviformis and Uvigerina acuminata. In gen-
eral, foraminifers exhibit a relatively great number of FODs
(Harzhauser and Piller 2007), with planktonic taxa less diverse.
The most important planktonic foraminiferal event is the FOD
of Globigerinoides bisphericus Todd in the upper Karpatian.
Calcareous nannoplankton floras are characterized by
Helicosphaera ampliaperta, H. carteri, H. mediterranea,
Reticulofenestra pseudoumbilica, Sphenolithus heteromorphus,
and Pontosphaera multipora (Steininger et al. 1976; Svébenicka
et al. 2003). Soliman and Piller (2007) described a low-diversity
dinoflagellate association with dominant Operculodinium
centrocarpum, Lingulodinium machaerophorum, Reticulato-
sphaera actinocoronata and Spiniferites spp.

Facies: The base of the Karpatian sequences is represented
mainly by terrestrial, alluvial, fluvial, and deltaic deposits
which upsection pass rapidly into marine, neritic to shallow
bathyal sediments. Sedimentation is dominated by green-blue
and grey pelites and silty calcareous shales in offshore environ-
ments and clayey sand in marginal areas. The lower Karpatian
has still similarities with the Ottnangian, pointing to cool-tem-
perate water masses with high numbers of siliceous fossils
(Rogl et al. 2003b). Suboxic bottom conditions in the basins,
upwelling and temperate water are also suggested based on
planktonic foraminifers (Cicha et al. 2003). Carbonates as
known from the Hungarian Bantapuszta section (Kokay 1973)
are scarce and correspond in composition to the lower
Ottnangian corallinacean-bryozoan type. Warmer water indica-
tors, such as Globigerinoides or Globorotalia, appear in the late
Karpatian together with a thermophilic mollusc fauna (Harz-
hauser et al. 2003).

Correlation: After a long history of misinterpretations and
miscorrelations (for a more recent compilation see Harzhauser et
al. 2003) the Karpatian Stage is nowadays consistently consid-
ered to be time-equivalent to the latest Burdigalian. Although
the base of the stage cannot be biostratigraphically tightened,
the calcareous nannoplankton flora with the co-occurrence of
Helicosphaera ampliaperta and Sphenolithus heteromorphus



places the entire Karpatian record in calcareous nannoplankton
zone NN4. The occurrence of Globigerinoides bisphericus in
the upper part of the Karpatian allows a correlation with
foraminiferal zone M4b of Berggren et al. (1995) and also
places it in the latest Burdigalian.

Within this biostratigraphic frame, the unconformity at the base
of the Karpatian and the following transgression can be corre-
lated with the sea level rise at the beginning of the global 379 or-
der sea level cycle TB 2.2. of Haq et al. (1988) and Bur 4 of
Hardenbol et al. (1998). The Karpatian/Badenian (Burdigalian/
Langhian) boundary is characterised by a significant sea level
drop (Haq et al. 1988; Hardenbol et al. 1998), expressed as a hi-
atus traceable throughout the Central Paratethys (Rogl et al.
2002). Continuous sedimentation from Karpatian to Badenian
has never been observed. The top of the Lower Miocene in the
Paratethyan basins is marked by erosional surfaces or by an an-
gular discordance between the Lower and Middle Miocene
strata, frequently called the “Styrian unconformity” (Stille 1924;
Latal and Piller 2003). As a consequence, the Karpatian
matches only one 3 order sea level cycle (TB 2.2., Bur 4 as
base).

Paleogeography: The Karpatian starts with a transgression and
a reorganisation of the paleogeographic pattern (Rogl et al.
2003b). The northward migration of a variety of biota was fa-
voured by a general warming trend and by a new broad connec-
tion with the Mediterranean that established via the Slovenian
“Trans-Tethyan Trench Corridor” (Bistricic and Jenko 1985).
This seaway enabled a free faunal exchange between the Central
Paratethys and the Mediterranean area. This change in environ-
ment is adjoined by a dramatic tectonic turnover in the Central
Paratethys area leading to a change from W-E trending basins to-
wards intra-mountain basins (Rogl and Steininger 1983; Rogl
1998a; Kovéac et al. 2003). A typical example for the
geodynamic impact is the abrupt, discordant progradation of up-
per Karpatian estuarine to shallow marine deposits over lower
Karpatian offshore clays in the Alpine Foreland Basin and in
the Carpathian Foredeep (Adamek et al. 2003). The widespread
formation of evaporites in the Rumanian part of the Carpathian
Foredeep and in the Transylvanian Basin points to a poor or
even absent connection with the Eastern Paratethys during the
latest Early Miocene.

FIGURE 3 —»

Paleogeographic sketch-maps of the Mediterranean — Central Paratethys
region (grey: land; white: water):

A: During the Late Oligocene good marine connections with broad sea-
ways between the Central Paratethys, Mediterranean and North Sea were
present. The Central Paratethys was a predominantly west-east oriented
sea.

B: By the early Middle Miocene the connection to the North Sea had van-
ished, a connection to the Mediterranean was open only through the
“Trans-Tethyan-Trench-Corridor” and the connection into the Eastern
Paratethys was reduced to a few narrow gateways.

C: During the early Late Miocene the Central Paratethys has changed
into Lake Pannon with no marine connections, neither into the Mediter-
ranean nor into the Eastern Paratethys.

D: In the latest Miocene the Messinian Salinity Crisis heavily affected
the Mediterranean basins by desiccation and the deposition of thick
evaporites (grey hatching). The relict fresh water systems of the Central
Paratethys contributed to the hydraulic regime of the Eastern Paratethys.

Maps modified from Rogl (1998) and Popov et al. (2004).
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Middle Miocene

Badenian Stage

Papp and Steininger (1978) defined the Badenian Stage based
on the stratotype locality Baden-Sooss, south of Vienna (fig. 2).
The type-locality is a clay pit in which the characteristic
grey-blue basinal clay (local name: “Baden Tegel”) is exposed.
The Baden Tegel is well known for its excellent fauna consist-
ing of a highly diverse benthic foraminiferal assemblage and
more than 400 of molluscan species besides other invertebrates
and vertebrates. The base at the stratotype section was never ex-
posed, the top is unconformably overlain by Sarmatian and
Pannonian deposits respectively. The clay pit is not actively
worked and the outcrop is now poor.

The base of the Badenian was defined with the first occurrence
of Praeorbulina (Papp and Cicha 1978) following a transgres-
sion above the unconformity due to the Styrian tectonic phase
(Stille 1924) and the sea level lowstand at the Bur 4/Lan 1 se-
quence boundary (Latal and Piller 2003; Strauss et al. 2006).
Biostratigraphic subdivision is based on planktonic foram-
inifers (Orbulina suturalis, Velapertina indigena, Globi-
gerinoides quadrilobatus, Globorotalita druryi, Globorotalia
peripheroronda, Globoquadrina altispira) as well as on smaller
(Uvigerina grilli, U. macrocarinata, U. venusta, U. brunnensis,
Pappina parkeri, P. neudorfensis) and larger benthics (Borelis
haueri, B. melo melo, Planostegina group costata, P. giganteo-
formis, Amphistegina mammila) (cf. Cicha et al. 1998). Several
fossil groups increase dramatically in diversity at the onset of
the Badenian. This event, the “Early Badenian Build-up Event
(EBBE)”, has been explicitly worked out for gastropods, with
505 taxa having their FOs, and for foraminifers, with FOs of 82
taxa (Harzhauser and Piller 2007). These authors denominated
this event as “Early Badenian Build-up Event (EBBE)”.

A threefold subdivision of the Badenian is generally carried out
based on significant paleoecologic and paleogeographic
changes reflected in the composition of the biota (Papp et al.
1978; Kovic et al. 2004). The lower Badenian is represented by
the “Lagenidae Zone”, the middle Badenian by the
“Spiroplectammina Zone”, and the upper Badenian by the
“Bulimina/Bolivina Zone” (Grill 1943). This subdivision is
particularly conspicuous in the eastern Central Paratethys and
the Carpathian Foredeep and resulted in the establishment of
three substages — Moravian for the lower, Wielician for the
middle, and Kosovian for the upper Badenian. Most character-
istic are the widespread evaporites of the Wielician Substage
(Papp et al. 1978), which occur in the Carpathian Foredeep
(Peryt 2001) and in the Transylvanian Basin (Krézsek and
Filipescu 2005) .

Facies: Besides the highly fossiliferous offshore clays, the
Badenian is the climax of the Paratethyan carbonate production.
Corallinacean limestones are ubiquitous, but the only notewor-
thy coral reef phase of the Central Paratethyan succession oc-
curs during the Badenian. Early Badenian reefs in southern
parts of the Paratethys are fairly diverse. Especially in the
Styrian Basin several small coral reefs composed of
Montastrea, Tarbellastraea, Leptoseris, Acropora, and Porites
developed, which, however, had to keep pace with high
terrigenous and volcanoclastic input (Friebe 1993; Riegl and
Piller 2002; Erhart and Piller 2004). By Late Badenian times a
variety of photozoan and heterozoan carbonate facies was still
present (Dullo 1983), but a distinct change in coral construc-
tions had occurred. Even in the southern Central Paratethyan
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basins (e.g., Vienna Basin, Styrian Basin) complex reefs are ob-
served no more. They were replaced by coral carpets, developed
along detached islands and dominated by Porites, Tarbell-
astraea, Caulastrea, Acanthastrea, and Stylocora (Piller and
Kleemann 1991; Riegl and Piller 2000, 2002). This shift in reef
structure and diversity seems to be linked to the climatic deterio-
ration triggered by the global Mid-Miocene Climate Transition
(Shevenell et al. 2004). In northern parts of the Paratethys this
change is more severe, leading to a loss of algal-bryozoan-coral
bioconstructions in favour of algal-serpulid-vermetid “reefs”
(Pisera 1996; Studencki 1999).

Correlation: Based on the FOD of Praeorbulina in the Styrian
Basin, the Vienna Basin and the Alpine Foreland Basin the early
Badenian can be correlated with the early Langhian of the Medi-
terranean (Rogl et al. 2002). In all known shallow water sites of
the Central Paratethys the very base of the Middle Miocene,
however, is missing. This is clearly related to the widespread
and pronounced unconformity and reflected by the missing first
evolutionary stages from Globigerinoides bisphericus to
Praeorbulina in nearly all basins and sections (aside from one
section in the Styrian Basin; Rogl, pers. comm. 2007). The latter
is usually represented by co-occurring Po. glomerosa curva and
Po. glomerosa glomerosa only (Rogl et al. 2002). In terms of
nannoplankton stratigraphy the lowermost Badenian still corre-
lates to NN4 due to the occurrence of Helicosphaera ampli-
aperta and Sphenolithus heteromorphus (Rogl et al. 2002;
Spezzaferri et al. 2002, 2004). Higher up NN5 is clearly re-
flected by the presence of Helicosphaera waltrans together with
S. heteromorphus (Rogl et al. 2002). With these biostratigraphic
tie points the transgression at the base of the Badenian can
clearly be correlated to the global sea level cycle TB 2.3. of Haq
et al. (1988) and Bur 5/Lan 1 of Hardenbol et al. (1998) (Kovac
et al. 2004; Strauss et al. 2006). The top of this lower Badenian
cycle is marked by an unconformity in seismic surveys in the
Vienna Basin, pointing to a sea level drop of more than 120 m
(Kreutzer 1986; Weissenbick 1996; Harzhauser and Piller
2007). Furthermore, in many marginal settings, e.g. the Alpine
Foreland Basin and the Eisenstadt-Sopron Basin, the end of the
marine sedimentation of the first Badenian cycle can be corre-
lated to the same event (Mandic et al. 2002; Mandic 2004; Kroh
et al. 2003). Based on the co-occurrence of Orbulina and
Praeorbulina in the underlying deposits (e.g., Rogl et al. 2002),
the basin-wide occurrence and the remarkable magnitude of the
sea level drop a link with the global sea level drop at about 14.2
Ma is reasonable. This event was triggered by the expansion of
the East Antarctic ice sheet (Flower and Kennett 1993;
Shevenell et al. 2004) and corresponds to the Lan 2/Ser 1
sequence boundary of Hardenbol et al. (1998).

The second Badenian cycle is interpreted to be an expression of
the global sea level cycle TB 2.4. of Haq et al. (1988). A distinct
lowstand wedge and a well-developed transgressive wedge are
observed in seismic studies in the Vienna Basin (Kreutzer 1986;
Strauss et al. 2006). In the Carpathian Foreland basins and in the
Transylvanian Basin a pronounced evaporitic phase starts,
known as the Wielician crisis (Steininger et al. 1978; Kasprzyk
1999; Chira 2000), which correlates to the Lan 2/Ser 1 lowstand
of Hardenbol et al. (1998). While evaporite formation continued
in the east throughout the middle Badenian, in the western parts
of the Central Paratethys this cycle is characterised by
corallinacean platforms with frequent caliche formation and
vadose leaching (Dullo 1983; Schmid et al. 2001). The occur-
rence of Sphenolithus heteromorphus places this middle
Badenian sediments in nannoplankton zone NN 5.



The renewed flooding of the third Badenian cycle is
biostratigraphically dated by the onset of nannoplankton zone
NN6 (Hudickova et al. 2000; Kovac et al. 2004). The base of
this biozone is defined by the last occurrence of Sphenolithus
heteromorphus and corresponds to the Langhian/Serravallian
boundary in the Mediterranean, which was calibrated by Foresi
et al. (2002a) at 13.59 Ma (see also Gradstein and Ogg 2004;
Gradstein et al. 2004; Lourens et al. 2004). Therefore, the
Langhian/Serravallian boundary is located within the Badenian
and correlates roughly to the middle/upper Badenian boundary.
Considering the dating and the magnitude of this cycle a corre-
lation with the global cycle TB 2.5. of Haq et al. (1988) can be
expected. This late Badenian is characterised by a stratified wa-
ter body indicated by the deposition of dysoxic pelites in
basinal settings in the entire Central Paratethys area (e.g.,
Hudéckova et al. 2000). Even the platforms became affected by
repeated hypoxic events as documented by Schmid et al.
(2001).

Paleogeography: The paleogeographic situation changed
strongly during the Badenian. During the early Badenian the
“Trans-Tethyan Trench Corridor” via Slovenia was still open
and connected the Mediterranean Sea with the Pannonian basin
system (fig. 3B). The connections into eastern directions, how-
ever, are still controversial. While Rogl (1998a) and Steininger
and Wessely (2000) postulate an open connection into the East-
ern Paratethys (fig. 3), Studencka et al. (1998) and Popov et al.
(2004) indicate a land barrier between both seas. Rogl (1998a)
discussed an already subducted marine pathway between the
southern margin of the Black Sea plate and the Pontids, con-
necting the Eastern Mediterranean with the Central Paratethys.
A repeated re-opening of the Tethyan gateway between the Med-
iterranean and the Indo-Pacific during the Langhian (early
Badenian) (Rogl 1998a; Popov et al. 2004) and even into the
Serravallian (Jones 1999) is highly probable.

During the middle Badenian the eastern seaways were sealed.
Water supply for the Central Paratethys was only warranted via
the “Trans-Tethyan Trench Corridor”. This gateway was finally
closed in the late Badenian. The entire Central Paratethys was
therefore depending on a connection with the Eastern Para-
tethys via today’s western Black Sea area. Faunistic differences
between the diverse Central Paratethys and the impoverished
Eastern Paratethys at that time, however, exclude the Eastern
Paratethys as passage into the west (Studencka et al. 1998).
Again, the enigmatic seaway between the Black Sea plate and
the Pontids might have acted as gateway (Rogl 1998a). Such a
connection would also be obligatory to explain the immigration
of new radiolarian assemblages into the Central Paratethys as
discussed by Dumitrica et al. (1975).

The next dramatic change in marine biota occurs with the dawn
of the Sarmatian. Of the Badenian fauna, 588 LOs of gastro-
pods and 121 of foraminifers are recorded and designate this
event as the strongest turnover event of the Paratethyan history.
Harzhauser and Piller (2007) christen this event the
“Badenian-Sarmatian-Extinction-Event” (BSEE). The faunal
re-orientation was triggered by a strong restriction of the open
ocean connections of the Central Paratethys (Rogl 1998a), cor-
responding to the Ser 3 sequence boundary of Hardenbol et al.
(1998) and the begin of cycle TB 2.6. of Haq et al. (1988)
(Kovéc et al. 1999, 2004; Harzhauser and Piller 2004b; Strauss
et al. 2006). The Badenian/Sarmatian boundary would thus be
related with the glacio-eustatic isotope event MSi-3 at 12.7 Ma
(Abreu and Haddad 1998). Correspondingly, a considerable hi-
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atus at the Badenian/Sarmatian boundary is indicated by a
strongly erosive discordance in seismic lines in Paratethyan bas-
ins (Harzhauser and Piller 2004a, b).

Sarmatian Stage

The Sarmatian as a regional stage was already defined in the Vi-
enna Basin by Suess (1866). Its stratotype was designated in the
northern Vienna Basin at the Nexing section (fig. 2) (Papp and
Steininger 1974) which is characterized by biogenic sediments of
molluscan shells. The type section is part of the upper Sarmatian
and does not represent a boundary stratotype. Also at its top no
boundary to the Pannonian is preserved. Lithology and
depositional environment at the type-locality are very specific
and not representative for the stage (Harzhauser and Piller ac-
cepted). At large, the Sarmatian is a strongly twofold stage. The
lower Sarmatian, above a pronounced and widespread uncon-
formity, is dominated by fine siliciclastic sediments. The highly
variable carbonate facies, characteristic for the Badenian, van-
ished completely within the entire Paratethys Sea at the
Badenian/Sarmatian boundary. The upper Sarmatian sediments
reflect a mixed carbonate-siliciclastic regime all over the
Central Paratethys (Harzhauser and Piller 2004a, b).

The base of the Sarmatian was defined by the occurrence of a
highly endemic fauna, particularly molluscs and to a lesser ex-
tent foraminifers. Both groups allow the establishment of an
ecostratigraphic subdivision, which comprises for the lower
Sarmatian the Mohrensternia Zone and lower Ervilia Zone
among molluscs and the Anomalinoides dividens Zone,
Elphidium reginum Zone and Elphidium hauerinum Zone
among benthic foraminifers. The upper Sarmatian contains the
Porosononion granosum Zone and is subdivided into the upper
Ervilia Zone and Sarmatimactra vitaliana Zone by molluscs.
Contemporaneous with the abrupt increase in endemics, a total
loss in stenohaline biota occurs at the Badenian/Sarmatian
boundary. Since radiolarians, planktonic foraminifers, corals
and echinoderms are completely absent these sediments were
also named “brackish stage” (Suess 1866). Although this de-
nomination was rejected later (see Papp 1974a) the idea of an
environment with reduced salinity for the Sarmatian in general
was favoured until recently (e.g., Kovédc et al. 1999). After a
well-based opposition to this interpretation by Pisera (1996),
Piller and Harzhauser (2005) presented a range of data pointing
clearly to normal marine conditions for most of the Sarmatian
environments. Geophysical correlation, based on many oil-ex-
ploration boreholes, works well and consistently with
ecostratigraphy in the Central Paratethys basins (Harzhauser
and Piller 2004b).

Facies: The lower Sarmatian is characterized by siliciclastic
sediments, often with conglomerates at the base overlain by
fine-clastics, the latter frequently deposited on tidal flats or in
estuaries and rich in low-diversity molluscan faunas (Harzhauser
and Piller 2004b). Diatomites with marine diatoms and
silicoflagellates are a more open-water facies (Rogl and Miiller
1976; Harzhauser and Piller 2004a, b; Schiitz et al. 2007). Off-
shore deposits are represented by marls and silty clays with an
impoverished bivalve fauna (Kojumdgieva et al. 1989). Carbon-
ate rocks are represented only rarely by autochthonous build-ups
formed by the polychaete Hydroides and by bryozoans
(Harzhauser and Piller 2004a, b; Piller and Harzhauser 2005).
These bioconstructions are best developed in the Carpathian
Foredeep, extending as a chain of patches from Poland via
Moldavia and Rumania to Bulgaria (Pisera 1996). The lower
Sarmatian is terminated by the basin-wide occurrence of con-
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glomerates (e.g., Vienna and Styrian basins; Harzhauser and
Piller 2004b)

At the onset of the late Sarmatian, sedimentation switched from
a siliciclastic to a carbonate dominated system throughout the
Central Paratethys. Oolites and coquina-dominated sands start
to spread in nearshore settings and on shallow shoals giving rise
to small carbonate platforms (Harzhauser and Piller 2004a, b,
accepted). Mass occurrences of the larger foraminiferal species
Spirolina austriaca d’Orbigny characterize the latest Sar-
matian. Coevally a drastic increase occurred in bivalve shell
thickness (e.g., Venerupis, Sarmatimactra; Papp et al. 1974;
Piller and Harzhauser 2005). The early Sarmatian polychaete-
bryozoan communities collapsed and were replaced by unique
foraminiferan build-ups characterized by the sessile nubecu-
lariid genus Sinzowella in association with calcareous algae and
microbial carbonate. The Sarmatian oolites are the only Miocene
oolites in the entire Central Paratethys area.

Correlation: Correlating outside the Central Paratethys is prob-
lematical, due to the restricted connection of Paratethys to the
Mediterranean and the lack of most stenohaline faunas. Plank-
tonic foraminifers are almost entirely absent (Cicha et al. 1998;
Harzhauser and Piller 2007). The only saviour is the calcareous
nannoplankton, low in diversity and with endemic taxa
(Steininger et al. 1976; Stradner and Fuchs 1979). The absence
of Sphenolithus heteromorphus indicates a correlation with
zone NN6 (e.g., Schiitz et al. 2007), and the occurrence of
Discoaster kugleri in the uppermost part indicates NN7.

The very pronounced sea level lowstand at the Badenian/
Sarmatian boundary can be correlated with the Ser 3 sequence
boundary of Hardenbol et al. (1998). The lowstand at the end of
the Sarmatian, representing the Sarmatian/Pannonian bound-
ary, accordingly can be correlated with the Ser 4/Tor 1 se-
quence boundary which coincides with the Serravallian/
Tortonian boundary (Lourens et al. 2004). The entire Sarmatian
corresponds to only one 374 order sea level cycle — TB 2.6. of
Hagq et al. (1988) (Harzhauser and Piller 2004b; Kovic et al.
2004). Biostratigraphic data combined with astronomically de-
rived ages place the Serravallian/Tortonian boundary at 11.54
Ma (Lirer et al. 2002; Foresi et al. 2002b) what is in accordance
with the age (11.5 Ma) proposed by Rogl et al. (1993) and
Kovic et al. (1998a, b) for the Sarmatian/Pannonian boundary.
The sea level lowstand between the lower and upper Sarmatian
can be interpreted as lowstand between two 4™ order cycles
(Kosi et al. 2003; Harzhauser and Piller 2004b; Strauss et al.
2006). In the Eastern Paratethys the Sarmatian has an analogue
in the regional stages Volhynian and (lower) Bessarabian (Rogl
1998a, b; Harzhauser and Piller 2004b, 2007). Although with-
out any tie point, the sediments of the Sarmatian show a clear
astronomical signal with a 400 ka eccentricity component
which may have triggered the 4" order cycles and, in addition,
100 ky and 2.35 Ma components (Harzhauser and Piller
2004b).

Paleogeography: During the Sarmatian the Paratethys became
almost completely sealed off from the Mediterranean. The Cen-
tral Paratethys was, however, well connected to the Eastern
Paratethys (Rogl 1998a). From there, a narrow marine connec-
tion into the Mediterranean Sea formed far in the east due to tec-
tonic movements along the S-Anatolian fault system
(Chepalyga 1995; Steininger and Wessely 2000). The fair con-
nection between the two Paratethyan seas is reflected by a strik-
ing similar faunistic inventory characterised by a highly
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endemic and considerably impoverished fauna lacking most
stenohaline taxa (Kolesnikov 1935; Papp et al. 1974). This pe-
culiar character of the marine fauna was recognised already by
Suess (1866) who then introduced the term Sarmatian.

Late Miocene

Pannonian Stage

The stratotype of the Pannonian Stage is located in a clay pit in
Vosendorf (Lower Austria) close to the southern border of the
city of Vienna (Papp 1985). The type section contains highly
fossiliferous clays with sandy interlayers; its base is not ex-
posed. All surface outcrops show a discontinuous sedimentation
between the Sarmatian and Pannonian, although several authors
refer to “transitional beds” (e.g., Janoschek 1942; Papp 1951).
This interpretation was evoked by reworked Sarmatian fossils at
the base of the Pannonian deposits (Harzhauser et al. 2004).

The turn from the Sarmatian to the Pannonian is marked by a
major incision in faunal content with an extinction rate over
90% for gastropods and foraminifers. This is the “Sarmatian-
Pannonian-Extinction-Event” (SPEE) (Harzhauser and Piller
2007). The Pannonian Stage was established on its very peculiar
mollusc fauna with a high degree of endemism and rapid evolu-
tionary radiations (Miiller et al. 1999) reflecting the evolution of
a long living lake system, called Lake Pannon (fig. 3C). Among
bivalves the genera Mytilopsis, Congeria, and Lymnocardium
and among gastropods the genus Melanopsis are the most im-
portant representatives mirroring this evolutionary history. The
development of the fauna was controlled by the gradual fresh-
ening of the water body as well as by geodynamic processes, re-
sulting in profound changes in lake geometry (Magyar et al.
1999b).

The evolutionary lineages of molluscs allow a clear biostrati-
graphic subdivision within the lake sediments, as already real-
ized by Fuchs (1875) and elaborated in a great detail by Papp
(1951) who applied a letter zonation (Pannonian A-H) instead of
eco-biozones. The type section is stratigraphically located in
Zone E. After a first attempt by Rogl and Daxner-Hock (1996),
the letter zonation has been traced back to biozones by Magyar
et al. (1999a, b) and Harzhauser et al. (2004). This molluscan
biozonation can be differentiated for littoral and sublittoral
depositional environments. A biozonation based on dino-
flagellates has been established (Magyar et al. 1999a).

Facies: Deltaic gravels, sands, whitish marls and lignites accu-
mulated along the coasts of Lake Pannon. Typical deposits in
basinal settings are grey-blue clays and marls as exposed in the
stratotype section (Papp 1985). During phases of high water ta-
bles the deep lake areas have been exposed to hostile dysoxic
conditions resulting from a well developed hypolimnion (Harz-
hauser and Mandic 2004). Carbonate sediments are completely
lacking in the Central Paratethys whilst oolites and bryozoan
bioconstructions are still frequent in upper Bessarabian deposits
of the Eastern Paratethys (Pisera 1996). During the late
Pannonian, the northwestern part of the lake — e.g. Vienna Basin
— turned into floodplain-environments as the coastline retreated
(Magyar et al. 1999b; Harzhauser and Tempfer 2004). The cen-
tral and southern part remained as a subbasin complex filled by
prodelta turbidites and prograding deltaic deposits, several hun-
dred meters deep (Popov et al. 2004). Despite its shrinking size,
the southern coastline along the northern Dinarids was quite sta-
ble throughout the Pannonian (Magyar et al. 1999b; Popov et al.
2004) (fig. 3D).



Correlation: For Harzhauser et al. (2004) the lower to middle
Pannonian lake deposits represent the single cycle TB 3.1. of
Hagq et al. (1988), starting at the Middle Miocene/Upper Mio-
cene (=Serravallian/Tortonian) boundary due to the influence
of the glacio-eustatic sea level lowstand Ser 4/Tor 1 of
Hardenbol et al. (1998) (Strauss et al. 2006). The upper
Pannonian sediments belong to the two 374 order cycles TB 3.2.
and 3.3. (Haq et al.1988) starting with the Tor 2 lowstand of
Hardenbol et al. (1998). As in the Sarmatian, a clear astronomi-
cal signal with a 100 ka, a 400 ka, and a 2.35 Ma component has
been detected (Harzhauser et al. 2004). Although currently
floating, this signal may enable a more precise correlation of
the Pannonian with the global chronostratigraphic scale.

Stevanovic et al. (1990), misled by similarities of the endemic
mollusc faunas, erroneously correlated upper Pannonian depos-
its of Lake Pannon with deposits of the Eastern Paratethys
Pontian Stage. This stratigraphic concept became formalised
with the publication in an independent volume of the series
Chronostratigraphie und Neostratotypen. The result is an erro-
neous usage of the “Pontian Stage” for Lake Pannon deposits,
being now deeply rooted in the literature until recently (e.g.,
Saftic et al. 2003). A very detailed integrative stratigraphic
evaluation of magnetostratigraphic, geochronologic and
biostratigraphic data clearly demonstrated that the upper
Pannonian deposits, starting with the regional Congeria
praerhomboidea Zone, precede the Pontian of the Eastern
Paratethys by at least 2 Ma (Magyar et al. 1999a). Even this
very clear data did not result in the definite suppression of the
name “Pontian” from Lake Pannon deposits. The introduction
of a new regional stage (‘“Transdanubian”) representing the in-
terval between the base of the upper Pannonian and the Eastern
Paratethys stage Pontian (Sacchi and Horvath 2002) creates
more problems than it solves. Thus, the base of the Pontian
Stage, usually correlated with the base of the Messinian and
with a 3™ order sequence-stratigraphic surface in the topmost
part of the Lake Pannon infill (= TB 3.3. of Haq et al. 1988) was
currently shown to be at least 1 Ma younger than the base of the
Messinian (Popov et al. 2004; Vasiliev et al. 2005). At that
time, however, Lake Pannon probably has become already
completely desiccated (fig. 3D). The Pontian is here dismissed
from the regional chronostratigraphic scheme of the Pannonian
Basin System.

Paleogeography: Lake Pannon was an enclosed basin of highly
variable extent (Magyar et al. 1999b) covering the Pannonian
Basin system which was framed by the Alps, the Carpathians and
the Dinarids (fig. 3C). The development of the lake illustrates
the ongoing continentalisation in central and south-eastern Eu-
rope and progressive restriction of the aquatic realm in the Cen-
tral Paratethys area. Lake Pannon formed at about 11.6 Ma in
place of the relic Central Paratethys Sea. At that time, the Eastern
Paratethys reached westward into the Dacian Basin. Its associ-
ated Bessarabian fauna is a direct descendent of the late Middle
Miocene Sarmatian/Volhynian faunas (Kolesnikov 1935) and
differs fundamentally from the Lake Pannon assemblages.

DISCUSSION AND CONCLUSIONS

The high degree of endemism existing in the Paratethys from
time to time, caused by strong isolation from other oceanic
realms (e.g., Mediterranean, Indo-Pacific, Atlantic), together
with inadequate definitions of the Mediterranean stages until
the second half of the 20™ century, induced the establishment of
a regional chronostratigraphic/geochronologic classification for
both the Western/Central and the Eastern Paratethys. The defini-
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tion of these regional stages, however, is based solely on fossil
contents. These biota — and even some stages — roughly repre-
sent Assemblage and Abundance zones (Acme zones) in terms
of biozone definitions, supported by a few good marker taxa in
some of the stages. For none of the Miocene Central
Paratethyan stages is a boundary stratotype defined.

Correlation with Mediterranean/global chronostratigraphy is
based on scattered biostratigraphic tie points, particularly those
of calcareous nannoplankton and planktonic foraminifers. The
occurrence of nannoplankton taxa correlates much better with
the zonation of Martini (1971) than with other zonal schemes.
Among calcareous nannoplankton these are the FO of Helico-
sphaera ampliaperta in the Eggenburgian, the LO of Spheno-
lithus belemnos in the Ottnangian, the LO of H. ampliaperta at
the end of the lower Badenian, the LO of Sphenolithus hetero-
morphus at the end of the middle Badenian, the total range of H.
waltrans in the early Badenian, the FO of Discoaster kugleri in
the Sarmatian, and the FO of D. hamatus in the Pannonian.
Planktonic foraminiferal markers are represented by Catap-
sydrax in the Ottnangian, by Globigerinoides bisphericus in the
upper Karpatian, and by the Praeorbulina lineage in the
Badenian. With increasing isolation in the course of the Miocene
such tie points become scarcer.

Due to the poor outcrop situation and lack of long sections
magnetostratigraphic correlation is only very limited. Some sur-
face data for the Early, Middle and Late Miocene have been
summarized by Daxner-Hock et al. (1998), Magyar et al.
(1999a), Scholger and Stingl (2004), and Harzhauser et al.
(2004), which concentrate mostly on mammal-bearing se-
quences. All these data are very punctiform, comprising usually
only one or two chrons. Therefore, their interpretation is largely
dependant from the a priori age model.

All stages are bounded by sea level lowstands which coincide
with 374 order sea level cycles and can be correlated with the sea
level curve of Haq et al. (1988) and sequence stratigraphic cycles
of Hardenbol et al. (1998). The Eggenburgian, Badenian and
Pannonian Stages span three 3™ order cycles, the Ottnangian,
Karpatian, and Sarmatian correlate to only one cycle each.

Taking all available data into account, the Karpatian/Badenian
boundary is clearly correlated with the Burdigalian/Langhian
(Early/Middle Miocene) boundary and the Sarmatian/Pan-
nonian boundary with the Serravallian/Tortonian (Middle/Late
Miocene) boundary. The base of the Neogene (Chattian/
Aquitanian boundary = Oligocene/Miocene boundary) falls
within the Egerian and the Aquitanian/Burdigalian boundary
within the Eggenburgian. Both boundaries can not be identified
with more precision. The Ottnangian and Karpatian Stages cor-
relate to the upper Burdigalian and within there to 3™ order cy-
cles TB 2.1. and TB 2.2. of Haq et al. (1988). The Langhian/
Serravallian boundary can be correlated with the middle/upper
Badenian boundary based on the LO of Sphenolithus hetero-
morphus, the Sarmatian can be correlated with cycle TB 2.6.,
bounded by Ser 3 lowstand at its base and Ser 4/Tor 1
(Hardenbol et al. 1998) at its top. The lower Pannonian coincides
with cycle TB 3.1., the upper Pannonian with cycles TB 3.2.
and TB 3.3. The Pontian Stage belongs to a different
geodynamic terrain and has to be excluded from the Pannonian
Basin System.

This correlation clearly shows that, regional geodynamic pro-
cesses notwithstanding, the global sea level signal is still visible
in these isolated basins. In concert with regional parameters this
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global signal is responsible for the general sedimentary and also
biotic development of the Central Paratethys. For the middle and
upper part of the Miocene Central Paratethyan successions also
a distinct astronomical signal is evident. At the moment, this
signal cannot be pin-pointed into the ATNTS 2004 (Lourens et
al. 2004).

Since the Central Paratethyan regional stages follow a clear
global signal (sea level changes, astronomical forcing), and their
definition in terms of chronostratigraphic rules is very poor or
even missing, and their usage is merely biotically (or
biostratigraphically) founded, the necessity of this regional
chronostratigraphic subdivision has to be seriously questioned.
The answer to this question is, however, linked to the general
definition of stages. The current definition of a stage includes
its global spread (see discussion in Aubry et al. 1999). In this
case formally defined regional stages are redundant and not
necessary for the Central Paratethys. However, if stages are es-
sentially regional, then a regional scale as for Central Para-
tethys would be much more appropriate.
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