Indian shell (Strombus gigas) is used, and most of the carving is done in Italy.

A use of shellfish that will probably never die in spite of synthetic substitutes is the fashioning of pearls into articles of personal adornment.

A clever Japanese, Dr. Mikimoto, originated the now thriving Japanese pearl culture industry, the basis of which is the introduction of a small foreign body into the living oyster, which year by year coats this cause of irritation with successive layers of pearl until a fine gem results. A pearl, however, can be of no better quality than the mother-of-pearl of the oyster that forms it, and unfortunately for the Japanese the quality of the mother-of-pearl in their oyster is inferior to that of the Australian, Ceylon and Pacific Island oysters.

Certain fresh-water shells produce pearls also, and for many centuries a Scottish pearl industry was carried on. This industry is quite ancient—in fact, stories of fabulous pearls from Britain was one of the minor inducements behind Caesar’s invasion of Britain.

RADULAE OF FOUR GASTEROPODS FROM SOUTH AUSTRALIA
AND NEW ZEALAND
(Text figs. 1-4.)

By TADASHIGE HABE, Ph.D.*

The radulae of four gastropod species are here described and figured. Two species are from South Australia, and two from New Zealand. The new generic name Austrancilla is proposed for Baryspiræa editææ (Pritchard and Gatlyf) in which the opercular nucleus is situated on the pointed lower end of the operculum, and the shell is maculately. In radular formula Austrancilla editææ stands near Baryspiræa, but in the nature of the operculum it resembles Turrancilla.

1. Anisodiæoma lugubris (Gmelin). Text fig. 1. The shell of this species has not a distinct tooth on the columnar margin of its aperture, but the radula shows close relationships with the Monodonta group in having the quadrate central tooth with a broad frontal margin and a large membrane on each side. This is the type species of the New Zealand genus Anisodiæoma Finlay.

2. Micrelenchus dilatatus (Sowerby). Text fig. 4. The central tooth is rather narrow, and has a broad membrane on each side. This feature indicates that the genus is one of the Cantharidæa group. This is also a New Zealand shell.

* Kyushu, Japan.
3. *Microstraea aurea* (Jonas). Text fig. 2. The radula of this Australian species is close to that of the *Astraea* group, with a broad central tooth and four elongated lateral teeth.

4. *Austrancilla edithae* (Fitchard and Gatliff), *gen. nov.* Text fig. 3. This is a small ancilid species from South Australia, and is generally referred to the genus *Baryspirae* with several other Australian species. The radula of this species is quite comparable with those of Japanese baryspirids, but differs from them in the operculum, the nucleus of which is situated at the pointed lower end. Moreover, the shell is slender and maculate. This species is therefore not referable to *Baryspirae*, so the new generic name *Austrancilla* is proposed with this interesting species as type.

1. Central and five lateral teeth of *Auniodon tenuis* (Gmelin), from New Zealand.

2. Central, four lateral, and first marginal teeth of *Microstraea aurea* (Jonas) from South Australia.

3. Central and marginal teeth of *Austrancilla edithae* (Fitchard and Gatliff) *gen. nov.* from South Australia.

4. Central and five lateral teeth of *Micrelencus dilatatus* (Sowerby), from New Zealand.